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SUMMARY

This report summarizes the results of a three year study sponsored by the Air Force Office of Spon-
sored Research under contract No. F49620-92-J-0496. The enthusiastic technical and administra-
tive effort of Drs. Spencer Wu and Brian Sanders of AFOSR are warmly acknowledged.

This project has involved analytical and experimental research across a family of structural me-
chanics and control problems. Our effort has been mainly addressed to four sets of research issues:

1. Solution and Validation Methodology for Simulation of Nonlinear Structural Systems
See Attachments [2,3,14].

2. NonlinearMechanics and Control of Flexible Structural and Robotic Systems
See Attachments [4-8,14-18].

3. Representation of Finite Rotations in 3 and N-Dimensions: Applications in Mechanics
See Attachments [9-11,13].

4. Radial Basis Approximation Methods and Associated Optimization Algorithms
See Attachments [12].

In addition to the above four sets of research issues, we have also engaged in significant re-
search on ancillary topics which are documented in the references listed in Attachment 1. The
above research spans a broad set of theoretical/conceptual [6,7,9-11,13-18], computational [2-
4,12,14], and hardware experimental [8] research topics.

In the text of this report, we present a brief guided tour of the results as a preamble to the nine-
teen attachments which present the details of the research methodology and results.
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1.0 Introduction

This report presents results achieved during a three year research project at Texas A&M
University sponsored by AFOSR under contract F49620-92-J-0496 PO001. The work was carried
out by the Principal Investigator (J. L. J unkins) and a team of mainly Ph.D. candidate co-research-
ers. As is evident from a brief review of the attachments, a substantial volume of research results
have emerged from this work. Given the volume of results, we decided to overview only the main
features of the results in the text, and make the technically more detailed attachments the heart of

our report.

The level of effort required to produce the attached results represents approximately five
man-years of total effort. Since only half that level of effort was funded by contract F49620-92-J-
0496, it is evident that the matching State of Texas support (Advanced Technology Project Num-
bers 999903-231 and 999903-232) has resulted in an augmentation of this project which consider-
ably leveraged the AFOSR support.

This report documents our results in four broad categories:
Solution and Validation Methodology for Simulation of Nonlinear Structural Systems
Nonlinear Mechanics and Control of Flexible Structural and Robotic Systems
Representation of Finite Rotations in 3 and N-Dimensions: Applications in Mechanics
Radial Basis Approximation Methods and Associated Optimization Algorithms

Attachment No. 1 lists 19 refereed publications that have been the result of this work during 1993-
1996, and also lists the graduate students that have been supported under this contract. In addition,
two additional students and a post-doctoral researcher have been supported under support of State
of Texas support (Advanced Technology Project Numbers 999903-231 and 999903-232) perform-
ing ancillary research. ’

The discussion below overviews selected aspects of the contribution in each of the above
categories; the details are covered in the attachments.

2.0 Selected of Technical Results

In Attachment [2,3], we present some very significant results from this research project; we
have developed methodology for validation of solution accuracy of nonlinear dynamical response.
This methodology applies to a wide class of physical systems modeled as systems of ordinary, par-
tial, or integro differential equations and associated boundary condition operators. It permits the
analytical construction of exact solutions (along with rigorously consistent, small perturbing force
functions), which neighbor given approximate numerical solutions. We show that is is possible to
construct these special case exact solutions in spite of the fact that the original initial value problem
cannot be solved exactly in closed form. The research reported in these papers consist of basic an-
alytical results and a careful proof-of-concept experiments for several example systems described
by ordinary and partial differential equation systems. For a wide class of nonlinear dynamical sys-
tems described by ordinary differential equations, we have developed an algorithm and software
that represent a standardized approach which promises to be of broad utility. For the class of dis-
tributed parameter systems, we have worked several examples and established proof of concept,
however, we have not found it feasible to construct a general purpose software package for this



case. Shown below in Figure 1isas

lide format result abstracted from Attachment 3; we depict the

error surfaces between a family of approximate response solutions compared to an exact solution we

constructed using the method of Attachments [1,2].

Figure 1.
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In Attachments [4,5,15,18], we present a substantial volume of new material on stability and
control of multi-body structural systems and, in particular, explore some of the conceptual, mathe-
matical, and numerical issues in underlying cooperation between two or more autonomously con-
trolled manipulators maneuvering a common paylod or object. For the typical case of redundant
actuation, there are an infinity of controls to affect essentially the same dynamical motion, however,
each control policy and resulting control forces represent different constraint loading on the struc-
ture. A familar example is two or more humans manipulating a heavy object such as a soffa or a pool
table; it is apparent that, due to actuator redundancy, the same rigid body trajectory can be acheived
by an infinity of actuation forces, but most of these control policies result in the actuators ‘fighting’
each other and imposing unnecessary constraint loads on the payload (and frustration of the actua-
tors). By defining an appropriate optimization policy, it is possible to minimize the norm of the con-
straint forces, for example, and thereby cause the manipulators to cooperate in carrying out the
maneuver. In Attachments [4,5], we develop a conceptual and mathematical basis for formulating
cooperative optimal control strategies and study the efficacy and robustness of this approach through
several simulation studies. Recently, Agrawal and his student Gary Yale at the Naval Postgraduate



School have successfully implemented this idea experimentally in collaboration with the Principal
Investigator, and have verified that the approach has practical validity as well as theoretical ele-

gance.

In attachments [6], we extend the classical linear quadratic regulator (LQR) to admit ine-
quality constraints on the control variables. This modest extension of the LQR is very significant,
because one of the classical shortcomings of the LQR is that there was no apriori guarantee that
the opt control derived was in fact physically realizable. A numerical example is given in [6], to

illustrate that the algorithm obtained is indeed numerically feasible.

In Attachment [7], we present an analytical result; we introduce a novel theoretical path for
asymptotic stability analysis for systems wherein the chosen Lyapunov function is negative semi-
definite. We use the new methodololgy to show that a commonly applied output feedback control
law (for controlling a symmetric four appendage structure) guarantees asympotic stability of all in-
finity of the anti-symmetric- in-unison modes, however, it does not guarantee the stability of the
infinity of anti-symmetric- in- opposition modes which are both unobservable and uncontrollable.

Attachment [8] presents analytical, computational, and experimental results for near mini-
mum-fuel and near-minimum-time control of the ASTREX structure at Phillips Laboratory. The
results in [8] establish the validity and effectiveness of our overall approach, however some exper-
imental anomalies were revealed due to several constraints imposed by the present sensor/actutor

system development.

In attachments [9-11,13], we present another significant result of our research that we ex-
pect to have important consequences. We have been able to greatly extend and generalize a fun-
damental classical result known as the Cayley Transform, to establish a revolutionary method for
parameterization of NxN proper orthogonal matrices. These results permit one to view the evlo-
lution of an NxN orthogonal matrix in terms of a minimal [N(N-1)/2-dimensional] set of ‘orienta-
tion parameters’ that are closely related to the quaternions or Euler Parameters famous for the
usual 3x3 orthogonal direction cosine matrix case. Thus the evolution of an NxN orthogonal ma-
trix can be qualitatively conceptualized as the motion of a generalized rigid body reference frame.
Since the spectral decomposition of all NxN symmetric positive definite matrices (which abound
in mechanics!) is a similarity transformation involving the orthogonal NxN matrix of eigenvectors
and the N positive scalar eigenvalues, it is apparent that nonsingular minimal parameter descrip-
tions of orthogonal matrices immediately enables minimal parameter descriptions of a general pos-
itive definite N*N matrices. Several applications are considered in the references that illustrate the
utility and support the conclusion that these results are fundamental in nature and will have a broad

impact.

In attachment [12], we present a method for converting a general functional optimization
problem into a nonlinear pro gramming problem by prameterizing the unknown control using radial
basis functions (RBFs). An adaptive RBF approximation method is introduced wherein an initially
small number of basis functions is gradually increased with the center locations being decided
based upon the sensitivity of the trajectory to variations of the weights on the currently existing set
of RBEs. The method adapts both the center locations and the local sharpness of the RBFs, and
uses the converged result from the previous iterations to initiate the subsequent iteration with an




accurate starting iterative which satisfies the terminal boundary contions. The convergence and
efficacy of the method is studied through two examples (an optimal trajectory problem and an op-
timal aerodynamic shape problem) fopr which the optimal solution has been previously determined
in the literature. The method is also compared to a non-adaptive RBF approach and the results
clearly establish the validity and attractiveness of this approach.

In attachment [14], we introduce a potentially revolutionary method for simulating dynam-
ics of nonlinear multi-body systems wherein a configuration-variable mass matrix occurs. In con-
ventional algorithms, computing acceleration requires inversion of this configuration-variable
mass matrix which directly limits the speed and precision, and ultimately, the practical dimension-
ality of multibody simulations. It also means that so-called order N methods are not really order
N when considering the dynamics of nonlinear flexible multibody systems. The new method in-
troduced involves a unique coordinate transformation to a new coordinate system which maps the
instantaneous mass matrix into an identity matrix. This is not done by solving a local algebraic
eigenvalue problem via conventional solvers, but rather new differential equations are derived that
inherently generate the instantaneous diagonalizing transformation. The validity and utility of the
algorithm is proven conclusively in [14], including a low dimensioned application, and in [19], we
apply it to a 14th order dynamical model for the Freewing Scorpion UAV. These analytical and
numerical studies prove the validity and show that this formulation has broad applicability in non-
linear multi-body dynamics.

3.0 Conclusions

It is evident that the research progress is excellent on many fronts. We have achieved sig-
nificant analytical progress and in several important instances have progressed from introduction
of a basic concept, to analytical studies, and proof-of-concept conputational and hardware demon-
strations, within this three year effort. Of course, this progress has been achieved in large measure
due to historical investments of AFOSR resources in support of our effort to develop the analytical
and experimental foundation upon which this progress rests. It is also significant that the ancillary
financial support obtained from Texas Advanced Research Project grants has greatly accelerated
our work and thereby leveraged the AFOSR investment. It is of special significance to note that
five exceptional graduate students and a postdoctoral researcher have been supported during this
project and three of the four Ph. D. students have successully defended their dissertations. Thus,
quite apart from the technical fruits of this research project, the development of outstanding young
engineers and scientists has been significant indeed.
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S

Construction of Benchmark

Problems for Solution of
Ordinary Differential
Equations

An inverse method is introduced to construct benchmark problems for the numerical
solution of initial value problems. Benchmark problems constructed in this fashion
have a known exact solution, even though analytical solutions are generally not
obtainable. The process leading to the exact solution makes use of an initially avail-
able approximate numerical solution. A smooth interpolation of the approximate
solution is forced to exactly satisfy the differential equation by analytically deriving a
small forcing function to absorb all of the errors in the interpolated approximate
solution. Using this special case exact solution, it is possible to directly investigate the
relationship between global errors of a candidate numerical solution process and the
associated tuning parameters for a given code and a given problem. Under the as-

sumption that the original differential equation is well-posed with respect to the small
perturbations, we thereby obtain valuable information about the optimal choice of the
tuning parameters and the achievable accuracy of the numerical solution. Five illus-
trative examples are presented. © 1994 John Wiley & Sons, Inc.

INTRODUCTION

We consider the initial value problem for linear
or nonlinear ordinary differential equations. In
general, we do not know the true solution and
any numerical method gives us an approximate
solution; the numerical solutions generally con-
tain two sources of error, round-off and trunca-
tion (Gear, 1971). We must somehow evaluate
the accuracy of a given approximate solution,
typically without knowing the true solution. The
most common way of assessing the true error of
a numerical solution is to reduce some tolerance
parameter, integrate again, and compare the
results (Hairer et al., 1987; Shampine, 1987). Al-
though more sophisticated error analyses can be
conducted, there is no general way to absolutely

Received October 10, 1993; Accepted April 25, 1994.

Shock and Vibration, Vol. 1, No. 5, pp. 403-414 (1994)
© 1994 John Wiley & Sons, Inc.

guarantee the final accuracy of the solutions.
This does not preclude obtaining practical solu-
tions for most applications, but it remains very
difficult to answer subtle questions.

Many numerical methods are available for
solving initial value problems. Early numerical
methods were merely fixed step size implementa-
tions and these methods were straightforward to
implement, but the results were often inconclu-
sive. In the 1960s, research on numerical meth-
ods for highly nonlinear initial value problems led
to adaptive methods that could automatically
vary the step size and/or the order of the method
to match a user-specified local error tolerance at
each step. This work led to the current genera-
tion of numerical methods. Due the presence of
round-off error, it is common to find that accu-

CCC 1070-9622/94/050403-12

403
10



404 Junkins

racy improves until step sizes or tolerances are
decreased below some critical value; the accu-
racy then degrades while solution costs increase
(Gear, 1971; Shampine, 1974). Shampine (1974,
1980) pointed out that a typical adaptive code
will not quit when impossible accuracies are
specified. He also reported that the standard
ways to assess true errors may lead to wrong
conclusions even using the best codes available
at that time. Shampine (1974) considered a ma-
chine dependent limit on the step size and one on
the local error tolerance, and he suggested a way
of automatically selecting an initial step size that
appears to be reliable and reasonably efficient
(Shampine, 1978). Enright (1989) pointed out that
the relationship between the accuracy obtained
and the specified tolerances is generally ex-
tremely sensitive to both the problem and the
method. In particular, for Runge-Kutta methods
with interpolants, he proposed an error and step
size control mechanism based on monitoring and
controlling the defect of a continuous approxima-
tion rather than the local error of the discrete
approximation.

In view of the historical and recent develop-
ments, we observe that the theory of differential
equation solvers is far from complete, so that the
understanding of a given code’s performance in-
variably requires a study of experimental results.
Hull, et al. (1972) and Krogh (1973) provided two
outstanding collections of test problems for this
purpose. These test problems have been used in
the development and testing of many codes and
can be regarded as standard benchmark prob-
lems for initial value problem solvers. Whenever
we know the true solutions of a test problem,
however, we can investigate the relationship be-
tween the true, or global error and the tuning
parameters of a given code (€.8., step size, local
error tolerance, order, etc.). The relationship be-
tween the behavior of an algorithm on a
benchmark problem and the behavior of the algo-
rithm on a problem of interest is difficult to estab-
lish. Because the problem of interest is almost
never exactly solvable, we need a means to es-
tablish a customized-benchmark problem thatis a
close neighbor of any given problem of interest.
We introduce here a broadly applicable inverse
method that constructs a neighbor of a given nu-
merical approximate solution; the neighboring
problem does in fact exactly satisfy the original
differential equations (with a known, small
forcing function) and serves as an excellent
benchmark problem. More specifically, we pre-
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sent a broadly useful approach to construct a
benchmark problem near the problem of interest
in a particular application. By virtue of the fact
that the benchmark problem is a customized near
neighbor of the problem of interest, we show
that numerical convergence studies on the
benchmark problem are directly useful in algo-
rithm selection, tuning, and accuracy validation.

The difficulties mentioned earlier result from
not knowing the true solution. What happens if
we are able to construct a problem-dependent
“exact”” benchmark problem? First we can eas-
ily investigate the true error/parameter relation-
ship and find the limiting precision and associ-
ated values of critical parameters of a given
code. Second, the problem of how to assess
global error vanishes automatically. Finally, we
have an absolute standard to find which method
is most suitable for an important member of our
particular family of problems. The sensitivity of
the accuracy/tolerance relation of a given
method is primarily a result of the heuristics used
to monitor the local error and control the step
size. If we do not know the true solution, then it
is very hard to assess which method is the best
for a class of problems because of the high sensi-
tivity of accuracy to variations in step size con-
trol logic. The remaining and most critical ques-
tion is: How useful is the convergence and
accuracy information obtained for the exactly
solved benchmark problem, in regard to drawing
conclusions for the (neighboring) original prob-
lem? It is important to recall that the benchmark
problem includes a regular perturbation to the
original problem. If the perturbation is small
enough, it is to be expected that all derivatives
will be close for the two problems and conse-
quently, the behavior of standard discrete vari-
able methods will be similar both with respect to
accuracy and stability. It is certainly true that
there are open questions on this issue needing
further investigation; however, by constructing a
family of neighboring benchmark problems. it is
usually possible to judge the size of the neighbor-
hood in which the convergence and accuracy
properties are relatively invariant with respect to.
the perturbation. Several applications presented
herein provide strong evidence supporting the
practicality of this approach.

In this study we propose a method to con-
struct a benchmark problem that is a close neigh-
bor of a given approximate solution of the origi-
nal problem. The benchmark problem is
constructed so that it satisfies exactly the differ-




ential equation but with a known, usually small,
time varying forcing function. We can investigate
the global error/parameter relationship of the
benchmark problem with the true solution in
hand. Under the assumption that the original
problem is well-posed with respect to small per-
turbations, we have valuable information about
the optimal parameters and the accuracy of the
numerical solution. Actually the stability as-
sumption is not so severe because any numerical
method needs it more or less to obtain reliable
solutions. Also, by introducing several neighbor-
ing approximate solutions with initial condition
and parameter variations, then repeating the en-
tire process, it is possible to experimentally es-
tablish insight on the size of the region over
which the convergence properties are invariant.

Lee and Junkins (1993) presented two com-
puter codes for first order and second order sys-
tems of differential equations, when the classical
Runge-Kutta fourth order method with a fixed
step size was used. An illustrations, we show the
utility of these codes for two simple nonstiff
problems. When we use the IMSL (1989) subrou-
tines DIVPRK and DIVPBS as solvers, we show
the utility of this methodology for two celestial
mechanics problems (Krogh, 1973) that have
been used as test problems several times in the
literature. Subroutine DIVPRK uses the Runge-
Kutta formulas of order five and six developed
by J. H. Verner. Subroutine DIVPBS uses the
Bulirsh—Stoer extrapolation method and will ter-
minate when impossible accuracies are specified.
In the fifth example, we consider a typical stiff
problem and discuss some limitations and restric-
tions of this methodology.

CONSTRUCTION OF EXACT
BENCHMARK PROBLEMS

We want to construct new differential equations
that are slightly perturbed versions of the original
differential equations. For these new differential
equations, we can establish the true analytical
solution using an algebraic inverse idea. Then we
can investigate the error/tolerance relationship
with an absolute standard. Under local stability
assumptions, we have valuable information
about the optimal parameters and the accuracy of
the particular numerical solution for the given
original differential equations. The stability as-
sumption is easily validated by constructing
some neighboring benchmark problems.
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Here we introduce one way for constructing
exact benchmark problems. We take a global ap-
proach for the perturbation term instead of a
piecewise polynomial perturbation to avoid the
lack of smoothness at break points. First we con-
sider the following two distinct initial value prob-
lems:

Xx=filx,1). x(tg) = xo overtp=t=l 1)
firRYN X R — RN

&= folx, x. 1), x(t)) = X0, X(fo) = Xo
overpp=t=t (2
for RN X RN X R— RN,

A candidate discrete approximate solution can be
obtained from the original first or second order
differential Eqs. (1) and (2) using a numerical
method. We distinguish between first and second
order systems because there are certain draw-
backs if one converts a naturally second order
system into a first order system. To establish a
continuous, differentiable motion near a given
approximate solution, least square approxima-
tion using the discrete version of the Chebyshev
polynomials can be invoked to obtain the solu-
tion from the the already discrete solution (Abra-
mowitz and Stegun, 1972; Junkins, 1978). We
first consider the least square approximation pro-
cess. There are n data points denoted as

x=gn), xa=gt), ..., xn=gty)
where t; are the values of the equally spaced in-
dependent variable (h, = (#;-; — t;) = constant).

A linear transformation of independent vari-
ables should be made to use discrete orthogonal-
ity with weight function w(z) = 1,

- t -
Wy ===
I

where /, is the constant increment of 7,

x = g(r) = GQ). 3)
From n data points, the function G can be estab-
lished as a linear combination of m basis func-

tions that form the discrete version of the
Chebyshev polynomials as follows:

m

G =D, a1

i=1
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where m = n and Ti(z) is the ith Chebyshev poly-
nomial.

The Chebyshev polynomials are defined as
follows: If u,, = m(m =0,1,2,. .., N)and

.

With the recurrence relations:

ul(N - m)!

T.() = 2, (=D" W —mN"

m=0

To(ll) =1

2u

Y
(n+ DN — m)Tp(u) = 2n + 1IN — 2u)T ()
- n(N + n+ DT, (u).

T(u) =

Note that the recurrence relations make it easy
to evaluate an expansion in Chebyshev polyno-
mials, and a similar recurrence makes it easy to
evaluate the derivative of the expansion.

Using discrete orthogonality of the Chebyshev
polynomials, the typical coefficient a; can be ob-
tained as follows:

Sy x Tt
a4 = S .
T, TTE)

where 1 = j = m.

We can find g(r) from G(t) because g(1) =
G(1(1)). Using the least square approximation,
we can find the continuous, differentiable, ana-
lytical solution x(t) of Eq. (3) that interpolates
the n discrete numerical solutions obtained from
Egs. (1) and (2). Now this analytical expression
x(1) does not satisfy exactly the Egs. (1) and (2).
However, substituting x(¢), x(t) into Eq. (1) al-
lows us to determine an analytical function for
the perturbation term e,(r) that appears in the
following differential equation:

1) = filx(), ) + e(t) = Fix, 1. ()
Alternatively, if the system is second order, then
substituting x(t), %(#), #(r) into Eq. (2) allows us
to determine the perturbation term e(r) that ap-
pears in the following differential equation:

£(1) = fi(x(0), 2(0), 1) + ext) = Falx, X, 1).
&)

Note that because x(t), X(¢), X(r) are available
functions, F(x, 1), Fa(x, X, t) are also available

13

functions that satisfy Egs. (4) and (3) exactly,
and x(r) is a neighbor of the original numerical
solution {x;, X2, . - . , Xa}. BY construction, the
functions e;(t) = x(1) — fi(x(1), 1) and ex(t) =
#(t) — folx(1), (1), 1) are known analytically and
therefore these small forcing functions can be
computed exactly at all . These functions are
programmed and Egs. (4) and (5) can be solved
by numerical methods and the results can be
compared to the exact x(1), x(t). The above
mathematical procedure can be performed in an
automated fashion using computer symbol ma-
nipulation. The symbol manipulation can also au-
tomate the generation of C or FORTRAN Code
to compute function e, (7) and/or ex(t).

Now Eg. (4) is a benchmark problem neigh-
boring Eq. (1) and we have arranged that x(f),
%(t) satisfy Eq. (4) exactly; and Eq. (5) becomes
the benchmark problem neighboring Eq. (2) and
we have arranged that x(t), X(1), ¥(1) satisfies Eq.
(5) exactly. We obviously want the perturbation
function e(?) to be as small as possible, that is,
the benchmark problem is not only a near neigh-
bor of the original discrete solution, but it also
very nearly satisfies the same differential equa-
tions. The previously discussed least square ap-
proximation method typically gives the poorest
approximation near the ends of the interval. This
may result in a relatively large e(?) near the initial
and final times. To avoid this problem we can
integrate Eqs. (1) and (2) over the enlarged inter-
val to- <t < 1. (Where to- <o, ly- > 1r) and use
these numerical results as generators for analyti-
cal solutions over the original interval (1p =t =
t;). Experience indicates that a 20% “enlarge-
ment”” {(tr — to-) = 1.2y — to)} is almost always
sufficient to support good interpolation over the
original interval (o = t =< t7). If the measure of
e(1) is judged too large then we increase the num-
ber of Chebyshev polynomials m to reduce e(t)
over the whole interval, or ‘‘start over” by at-
tempting to find a better approximate numerical
solution to initiate the process. Figures 1 and 2
provide logical flow charts showing construction
of a benchmark problem and an associated con-
vergence study for second order systems. '

ILLUSTRATIVE EXAMPLES

Now we demonstrate the previous ideas using
five initial value problems for ordinary differen-
tial equations. First we show the utility of the
computer codes (Lee and Junkins, 1993) for two
simple nonstiff problems. Then, two celestial me-
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FIGURE 1 Flow chart "for construction of a
benchmark problem.

chanics problems are introduced to illustrate the
utility of this methodology when we use the
IMSL (1989) subroutines DIVPRK and DIVPBS.
Finally, we consider a stiff problem in the fifth
example.

First Order Systems

We consider the following pair of nonlinear dif-
ferential equations.

X = 2X| - 2X|X2
(6)

X = —X2 + X1X2

where x,(0) = 1 and x,(0) = 3, and we seek the
solution over the interval 0 = r = 10.

First, we solve Eq. (6) using the Runge—Kutta
fourth order method to evaluate the candidate
discrete approximate solution. Here we use 121
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data points over the 20% enlarged time interval
—1 =t = 11. Second, we establish a continuous,
differentiable, analytical expression for interpo-
lating x,(t) and x»(r) from the discrete approxi-
mate solution. We use 51 Chebyshev polynomi-
als for fitting. Finally we substitute x,(t). x2(r),
%1(1), %(1) into Eq. (6) and determine functions for
e,(1) and ey(t) that satisfy the following equations
exactly

.’(.‘1 = ZX1 - 2X1X2 + ey (7)

Xy = —=xy + X1x2 + e1.

Now, Eq. (7) provides a benchmark problem
for Eq. (6), and x,(1), x»(t) are the solutions that
satisfy Eq. (7) exactly. Upon solving Eq. (7) nu-
merically with various values chosen for /, we
establish the relationship between step size and
global error. When we use the pointwise error in
the root mean square sense, Fig. 3 shows the
relationship in log/log scale. The critical value h
is about 0.0005 and if & decreased below 0.0005,
then the results begin to deteriorate. The rate of
convergence is 4 in this problem and this coin-
cides with the fact that an rth order method
should have a global error of O(/") in the absence
of arithmetic errors (Gear, 1971). Figure 4 shows
the perturbation terms over the time interval. For
the benchmark problem, the numerical results
are very reliable when we use 0.0005 as / be-
cause the error measures are about 107'* while
the solutions for x,(t), x»(¢) vary from 1072 to 10°
order. Now we turn our attention to the original
problem. Figure 5 shows the relationship be-
tween step size and error at t = 10 on a log/log
scale for the original problem. Because we do not
know the true solution, we could follow the com-
mon way of assessing the accuracy of a family of
approximate solutions using the IMSL (1989)
subroutines DIVPRK and DIVPBS. Comparing
Figs. 3 and 5, we notice that the shape is roughly
similar but, in Fig. 5, the critical value A is 0.0002
instead of 0.0005. The reason for this minor dis-
crepancy is the relatively large perturbation
terms in Fig. 4. If we decrease the perturbation
terms e;(r) and ey(t) by finding a higher order,
more accurate interpolation and thereby make
the benchmark problem closer to the original Eq.
(6), then we can reduce this discrepancy.

Second Order Systems

We consider the following nonlinear, nonautono-
mous second order differential equation.
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GIVEN A BENCHMARK PROBLEM
( with a known exact solution zs(t))

(1) = f(=(t),2(t)1) + €(t)

z(to) = zb(to), :i:(to) = ib(to), tp <t<iy

|

INITIAL SETTING ON TUNING PARAMETERS

FOR NUMERICAL SOLUTION PROCESS

VARY
TUNING
PARAMETERS

NUMERICAL SOLUTION PROCESS

|

APPROXIMATE NUMERICAL SOLUTION
OF THE BENCHMARK PROBLEM

s

|

EVALUATE ERROR MEASURE

s == il

Do we have
enough data for convergence
study ?

STUDY THE CHARACTERISTICS
GLOBAL ERROR vs TUNING PARAMETERS

FIGURE 2 Flow chart for convergence study.
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FIGURE 4 Perturbation terms of example 1.
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FIGURE 5 Error (at t = 10) vs. step size for the
original problem.

¥ = —x—0.1(1 + x)x + 0.1x*> + sin 3r (8)

where x(0) = 1 and %(0) = 0,-and ‘'we seek the
solution over the interval 0 < r =< 10. We convert
Eq. (8) to a first order system as follows:

j1=X2

&)

%= —x; — 0.11 + x})x; + 0.1x3 + sin 3¢

where x;(0) = 1 and x,(0) = 0.

We solve Eq. (9) using the Runge-Kutta
fourth order method to evaluate the candidate
discrete approximate solution. Here we con-
struct the interpolated solution using 121 data
points over the 20% enlarged time interval —1 =
¢ =< 11. An analytical expression for x,(r) is ob-
tained from the discrete approximate solution. In
this problem, a degree 30 Chebyshev polynomial
is established by the least square approximation.
Substituting x,(1), x,(2), %;(¢), into Eq. (8) we cal-
culate the function e(#) that satisfies the follow-
ing equation exactly.

F=—-x=0.1(1 + x)x + 0.1x3 + sin 31 + e.
(10)

To use the Runge—Kutta method, Eq. (10) can be
converted to a first order system as follows:

X = X3
. , _.an
%= —x; — 0.1(1 + x)x, + 0.1x} + sin 3t + e.

Now, Eq. (10) becomes a benchmark problem
for Eq. (8), and x(¢) is an algebraic function that
satisfies Eq. (10) exactly. When we use the
pointwise error in the root mean square sense,
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FIGURE 6 Global error vs. step size for the
benchmark problem.

Fig. 6 shows the relationship between global er-
ror and step size. The rate of convergence is 4 as
expected. Figure 7 shows the perturbation term
over the time interval. The critical value for step
size is about 0.001. Now we consider the original
problem. The relationship between step size and
error at t = 10 is shown in Fig. 8 when we follow
the common way assessing the true solution us-
ing the IMSL (1989) subroutines DIVPRK and
DIVPBS. Comparing Figs. 6 and 8. we observe
that the critical value 4 and the accuracy are al-
most the same.

We change the initial conditions slightly and
the nonautonomous term in the differential equa-
tion as follows:

&= —x = 0.1(1 + x)x + 0.1x* + 1.2 sin 3¢
(12)

where x(0) = 1.2 and ¥(0) = 0.2 over the interval
0=<r=10.
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e(t)

OE+0-

Perturbation
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Time
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0

-

FIGURE 7 Perturbation term of example 2.
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FIGURE 8 Error (at t+ = 10) vs. step size for the
original problem.

After using the same procedure, we obtain the
global error/step size relationship shown in Fig.
9. We notice that Figs. 6 and 9 are almost the
same. In other words, the critical value for h and
the accuracy are almost identical even though
there are 20% perturbations in the initial condi-
tion and the forcing term in the differential equa-
tion, in this case.

Two Body Problem

We consider the simple two body problem. The
exact solution is periodic with period 27 and the
solution traces out an ellipse with eccentricity

0.6.

%= —x/r3, x(0) =04, X(0)=0
}'? = —)7/)-3’ y(()) = 0’ y(O) =

1l

(13)

(S8

where r = (x2 + y)'%
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FIGURE 9 Global error vs. step size for the

benchmark problem of 20% perturbations.
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FIGURE 10 Absolute error vs. tolerance for the
benchmark problem (DIVPRK).

These equations can be solved exactly (Battin.
1987): the analytical solution is not inciuded here
because of space limitations. We reformulate Eq.
(13) as a first order system as follows:

X.| = X2

x"_: = —.\'1/(.\'% + .\’%)3/2

. (14)
X3 = Xy

X4 = _.\‘3/(X% + X%)yl

where x,(0) = 0.4, x2(0) = 0, x3(0) = 0, x4(0) = 2.

We solve Eq. (14) using DIVPRK to evaluate
the candidate discrete approximate solution.
Here we use 121 data points over the 20% en-
larged time interval and a degree 50 Chebyshev
polynomial approximation is used for the least
square fitting of x(t) and x3(1). After construct-
ing the benchmark problem, we do an absolute
error test on (0. 27). Figures 10 and 11 show the

od
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FIGURE 11 Absolute error vs. tolerance for the
benchmark problem (DIVPBS).
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FIGURE 12 Absolute error vs. tolerance for the two

body problem (DIVPRK).

relationship between absolute error and toler-
ance in log/log scale when we use DIVPRK and
DIVPBS for the benchmark problem. Figures 12
and 13 show the relationship between absolute
error and tolerance in log/log scale when we use
DIVPRK and DIVPBS for the original two body
problem. We notice that Figs. 10 and 11 are al-
most identical to Figs. 12 and 13, respectively.
The perturbation terms are shown in Fig. 14. We
plot the relationship between the number of func-
tion calls and the absolute error in Fig. 15. Thus
the benchmark problem (constructed by the
method of this study) essentially gives results
that are identical to those obtained by using the
exact solution of the original problem.

Euler Equations of Motion

We consider the Euler equation of motion for a
rigid body without external forces,

°1 DIVPBS
= /
e 1 position ¢ i
o ] -
=I s~ees velocity
(-5 4
-
El J
3 A
2 4
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‘-§‘ -
&)
S
'J E

-154+—————T—
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T s
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FIGURE 13 Absolute error vs. tolerance for the two

body problem (DIVPBS).
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FIGURE 14 Perturbation terms of the two body
problem.

X'[ = X2X3
.\;1 = —0.51.\'3.\‘] (15)
,‘63 = —XiX2

where x;(0) = 0, x2(0) = 1, x3(0) = 1.
The classical exact solutions of Eq. (15) are
the Jacobian elliptic functions (Abramowitz and

Stegun, 1972) as follows:

sn(t]0.51), x»=dn(t]0.51),

cn(r] 0.51).

X1

I

X3

They are periodic with a quarter period K where
K = 1.86264 08023 32738 55203 - in this
case.

We solve Eq. (15) using DIVPRK to evaluate
the candidate discrete approximate solution. To

5
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&
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FIGURE 15 Number of function calls vs. absolute
error.
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FIGURE 16 Absolute error vs. tolerance for the
benchmark problem (DIVPRK).
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establish a benchmark using our method, we use
121 data points over the 20% enlarged time inter-
val and determine a degree 50 Chebyshev least
square polynomial approximation of x(1), xx(t),
and x;(r). After constructing the benchmark
problem, we do an absolute error test on 0,4 K).
Figures 16 and 17 show the relationship between
absolute error and tolerance in log/log scale
when we use DIVPRK and DIVPBS for the
benchmark problem. Figures 18 and 19 show the
relationship between absolute error and toler-
ance in log/log scale when we use DIVPRK and
DIVPBS to solve Eq. (15) and compare to the
classical Jacobian elliptic function solution. We
notice that Figs. 16 and 17 are almost identical to
Figs. 18 and 19, respectively. The perturbation
terms are shown in Fig. 20. We plot the relation-
ship between the number of function calls and
the absolute error in Fig. 21. Thus, again,
this example indicates that our neighboring
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FIGURE 17 Absolute error vs. tolerance for the
benchmark problem (DIVPBS).
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FIGURE 18 Absolute error vs. tolerance for the

Euler equations (DIVPRK).

benchmark problem leads to essentially identical
convergence properties to using the exact solu-
tion of the original problem.

A Stiff Problem

We consider the following problem (Shampine
and Gordon, 1975) that represents a typical stiff
problem.

il

—29998x; — 39996x,
14998.5x; + 19997x;

X

(16)

Xa

where x;(0) = 1. x2(0) = 1.
The exact solutions of Eq. (16) are as follows:
x(t) = 7 exp(—10%) ~ 6 exp(—1)

(17)
x:(1) = —3.5 exp(—10"1) + 4.5 exp(—1).
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FIGURE 19 Absolute error vs. tolerance for the
Euler equations (DIVPBS).
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FIGURE 20 Perturbation terms of the Euler equa-
tions.

The eigenvalues of the coefficient matrix are —1
and —10% Figures 22 and 23 show the solutions
over two different intervals, a region of very
rapid change followed by gradual asymptotic be-
havior. It is almost impossible to obtain a satis-
factory orthogonal function benchmark problem
that covers both regions with a reasonable num-
ber of terms. We conclude that the proposed
methodology is not adequate for such stiff prob-
lems unless piecewise approximation methods,
for example, the type introduced by Junkins et
al. (1973) are used. Stiff problems are relatively
expensive to solve and the expense depends
strongly on the tolerance (Gear, 1971; Shampine
and Gordon, 1975; Shampine and Gear, 1979).
Enright et al. (1975) provide a good collection of
stiff test problems.

Euler Equations
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FIGURE 22 Solution of example 5 for the rapid
change region.

SUMMARY AND CONCLUSION

The present article introduces an inverse method
for constructing exact benchmark problems for
initial value problems. This methodology gives
valuable information about the optimal tuning pa-
rameters and the accuracy of the numerical solu-
tion for a class of ordinary differential equation
problems and for a given solution code. Numeri-
cal examples indicate that a rigorous error analy-
sis is usually obtained not merely for one nominal
solution, but for a substantial neighborhood of
the nominal solution. If one wants to use the
classical Runge-Kutta method with a fixed step
size, then the codes (Lee and Junkins, 1993) pro-
vide directly useful information about the opti-
mal step size h and the associated accuracy.
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FIGURE 23 Solution of example 5 for the gradual
change region.
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414 Junkins

More sophisticated users who are familiar with
adaptive and robust codes can also construct
similar benchmark problems; however, the Che-
byshev approximation method may have to be
replaced or modified to obtain a method not re-
stricted to uniformly spaced data. For stiff sys-
tems, special purpose approximations may be
required in lieu of the global Chebyshev approxi-
mations. The analytical expressions for the
benchmark problem and its solution can be estab-
lished using computer symbol manipulation [e.g.,
MACSYMA (1988), Mathematica, MAPLE,
etc.]. Then the user investigates the global error/
parameter relationship and compares various
codes with special case absolute standards. In
examples 3 and 4, we show the utility of this
methodology using the IMSL (1989) subroutines
DIVPRK and DIVPBS as solvers. And we inves-
tigate the absolute error/tolerance relationship
and compare DIVPRK and DIVPBS. We have
developed some basic methodologies, but there
remains a need for additional numerical experi-
ments to further evaluate the practical utility of
this approach.
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VALIDATION OF FINITE DIMENSIONAL APPROXIMATE
SOLUTIONS FOR DYNAMICS OF
DISTRIBUTED PARAMETER SYSTEMS

John L. Junkins and Sangchul Lee!

An inverse dynamics method is introduced for constructing exact special
case solutions for hybrid coordinate ordinary/partial  systems of
differential equations (hybrid ODE/PDE systems), and the utility of this
method in validating numerical solution methods is explored.

INTRODUCTION: Construction of Benchma;‘k Problems for
Solution of Ordinary Differential Equations

Given a flexible multi-body dynamical system, most rigorously described by a
hybrid system of nonlinear ordinary and partial differential equations, we seek to
validate simulations of the behavior of the system by numerical methods. With
most applications of approximate solution algorithms, we must somehow evaluate
the accuracy of a given approximate solution, without knowing the true solution.
What happens if we can construct an exact forced response solution for a special case
motion near(in a sense to be established) a candidate approximate solution? This
gives us an absolute standard and promises the capability of displaying exactly the
space/time distribution of solution errors for the special-case solution and therefore
suggesting remedies, if needed, to improve the discretization-based solution process.

The idea is easily introduced by first considering the initial value problem for
nonlinear ordinary differential equations.! In general, we do not know the true
solution and the numerical methods give us an approximate solution. The most
common way of assessing the true error of a numerical solution is to reduce the
tolerance, integrate again, and compare the results.2? While more sophisticated
error analyses can be conducted, there is no general way to absolutely guarantee
the final accuracy of the solutions. While this does not preclude obtaining practical
solutions for most applications, it remains very difficult to answer subtle questions.
Actually the theory of differential equation solvers is far from complete, so that
the understanding of a given code’s performance invariably requires a study of
experimental results. Hull, et al* and Krogh® provided two outstanding collections

*  Eppright Chair Protessor, Department of Aerospace Engineering, Texas A&M University, College Station, Texas
77843-3141. Fellow AAS; Fellow AlAA. .

+ Graduate Student, Department of Aerospace Engineering, Texas A&M University, College Station, Texas
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of test problems for this purpose, for the case of ordinary differential equations.
These test problems have been used in the development and testing of the codes
and can be regarded as standard benchmark problems for initial value problem

solvers.
Whenever we know the true solution of a test problem we can investigate

the relationship between the true, or global error and parameters of a given
code(e.g., step size, local error tolerance, order, etc.). Of course, only for a small
minority of interesting problems can the initial value problem be solved analytically.
We introduce here an inverse method which algebraicly constructs a continuous
neighbor of a given numerical approximate solution; the neighboring continuous
motion does in fact exactly satisfy the differential equations(with a known small
forcing function) and serves as an excellent benchmark problem. The remaining and
most critical question is: How useful is the convergence and accuracy information
obtained for the benchmark problem, as regards drawing conclusions for the original
problem? It is certainly true that there are open questions on this issue, however, by
constructing a family of neighboring benchmark problems, it is usually possible to
judge the size of the neighborhood in which the convergence and accuracy properties
are relatively invariant with respect to the perturbation, and thereby gain the

practical insight needed to proceed with confidence in a solution and associated
error measures.
Now, we propose a method to construct a benchmark problem which is a closely

neighboring trajectory of a given approximate solution of the original problem.
As will be evident, the benchmark problem motion is constructed algebraicly so
that it satisfies exactly the differential equation but with a known, usually small,
time varying forcing function. We can then investigate the global error/parameter
relationship of the benchmark problem with the true solution in hand. Under
the assumption that the original problem is well-posed with respect to small
perturbations, we have valuable information about the optimal parameters and
the accuracy of the numerical solution. Through study of a family of neighboring
benchmark problems, we can directly establish insight on the “stability” of this
error analysis.

Initially, we restrict attention to nonlinear ordinary differential equation(ODE)
systems, we subsequently broaden the discussion and examples to consider hybrid
differential equation systems. Here we introduce one way for constructing the exact
benchmark problem. First we consider the following initial value problem for a
second order ODE system:

i = f(z,2,t), z(to) = 2o, £(to) = 2o over tg <t < tf

1
f: RN xRN xR— RN 1)

Here we consider the case where z is a scalar(i.e.,N=1). The following approach
can be easily generalized for the vector case. A candidate discrete approximate
solution can be obtained from the original second order differential equation 1)
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using a numerical method. To establish a continuous, differentiable motion near a
given approximate solution, we use a least square approximation based upon the
discrete version of the Chebyshev polynomials; this polynomial approximation can
be established directly from the discrete approximate solution.” We first consider
the least square process. There are n data points such as z; = g(t1), 2 = g(t2),
ces, Tn = g(tn) where t; are the equally spaced values of the independent
variable(h; = (tit1 — ) = constant).

A linear transformation to nondimensionalize the independent variable should
be made to use the discrete version of the Chebyshev polynomials.

t—1

{(t)= W

where h; is the constant increment of .

z = g(t) = G(?)

From n data points, the least square polynomial approximation function G can be
established by a linear combination of m basis functions; we use the discrete version

of the Chebyshev polynomia_.ls"_ with weight function w(t) = 1 as follows:
G() =), aTi(D)
i=1

where m < n and the T;(f) are the discretely orthogonal Chebyshev polynomials.
The Chebyshev polynomials are defined as follows:
If 4y =m (m=0,1,2,---,N) and w(u) = 1, then

with the recurrence relationships:

To(u) =1
Ty(w) =1~ o

(n+1)(N = n)Tnqa(u) = (2n + 1)(N — 2u) T (u) — n(N +n + 1)Tr1(u)

Using the discrete orthogonality property of the Chebyshev polynomials’, coefficient
a;j can be obtained as follows:

Z?:} z; T;(t:)
Sier Ti(t) Ti(k)

a; =
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where 1 < j < m. Since no matrix inverseis required, and owing to the completeness
of these polynomials, it is well known that most smooth functions can usually be
approximated accurately using a modest degree (n).

We can find g(t) from G(f), since g(t) = G(i(t)). Using this least square
approximation, we can find a continuous, differentiable, analytical solution z(t)
which interpolates or lies very near the given n discrete numerical £; approximate
solutions of Eq.(1). Of course this analytical expression z(t) does not satisfy
exactly the Eq.(1). However, substituting zs(t), €s(t), £(t) into the equation
e(t) = 3(t) — f(=(t),2(t),t) allows us to determine an analytical function for the
perturbation term e(t) which appears in the following differential equation:

5(t) = f(z(t),5(2),1) + e(t) = F(z,2,t) (2)

Since f(z(t),%(t),t) is given and e(t) is an available algebraic function, F(z,z,t) is
available. Now z3(t) satisfies Eq.(2) exactly, and finally, this known function z(t)
is a neighbor of the original numerical solution {Z1, £, -+, Z,}. By algebraic
construction the function e(t) = #4(t) — f(zs(t),2s(t),t) is known analytically
and therefore we know this small forcing function at all ¢, and obviously, we
know “how small” e(t) is. This function is programmed and Eq.(2) can then be
solved by numerical methods and the results can be compared to the known exact
3(t), 25(t). The above mathematical procedure can be performed successfully using
computer symbol manipulation®, this is especially important for the generalizations
to consider hybrid differential equations. Now Eq.(2) is a benchmark problem
of Eq.(1) and z4(t), @s(t), Zs(t) satisfy Eq.(2) exactly. We obviously want the
perturbation function e(t) to be as small as possible, i.e., the benchmark problem
is not only a near neighbor of the original discrete solution, but it also very nearly
satisfies the given differential equations.

The previous least square approximation method has often been found to give
poor results near the ends of the interval. This poor fit may cause a relatively large
e(t) near the initial and final times. To avoid this problem we integrate Eq.(1)
over the enlarged interval o <t < ty4 (where to— <o, {5+ > tf) and use these
numerical results as generators for analytical solutions over the original interval
(to < t < t5). Experience indicates that a 20% “enlargement”{(t;4+ — to-) =
1.2(t5 — to)} is almost always sufficient to support good interpolation over the
original interval (to < t < tf). If the measure of e(t) is judged too large then we
increase the number of Chebyshev polynomials m to reduce e(t) over the whole
interval, or “start over” by attempting to find a better approximate numerical
solution to initiate the process. Figures 1 and 2 provide logical flow charts showing
construction of a benchmark problem and associated convergence study.

Now we demonstrate the idea using a simple nonstiff problem. We use the
Runge-Kutta 4th order method with fixed step size, therefore we have the most
common case that the integration control parameter is simply the step size h. The
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relationship between step size h and the global, or true errors gives us the infomation
about the critical value for h and the accuracy of the numerical solution. We
consider the following nonlinear, nonautonomous second order differential equation.

i = —z —0.1(1 + z%)¢ + 0.1z° + sin3¢ (3)

where z(0) = 1 and (0) = 0, and we seek the solution over the interval 0 < ¢ < 10.
We convert Eq.(3) to a first order system as follows:

Ty = T2

&9 = —zy — 0.1(1 + 23)z2 + 0.1z3 + sin3t )
where z;(0) = 1 and z2(0) = 0.

First, we solve Eqs.(4) using the Runge-Kutta 4th order method to evaluate the
candidate discrete approximate solution. Here we use 121 data points over the 20%
enlarged time interval —1 < t < 11. Second, we establish a continuous, differen-
tiable, analytical expression for interpolating z1,(t) from the discrete approximate
solution Z(t). We use a degree 30 Chebyshev polynomial approximation for the
least square fitting. Finally we substitute 21,(t), £1,(t), #1,(t) into Eq.(3) and
symbolically determine the function e(t) which appears in the following equation.

i=—z—01(1+2%)% + 0.1z° + sin3t + e (5)

To use the Runge-Kutta method, Eq.(5) can be converted to a first order system
as follows:
(i)] = T2

6
¢g = —z3 — 0.1(1 + z})z2 + 0.1z3 + sin3t +e (6)

Now, Eq.(5) serves as a benchmark problem for Eq.(3), because we know
functions z3(t) and e(t) which satisfy Eq.(5) exactly. Upon solving Eqs.(6)
numerically with various values chosen for h, and using the benchmark initial
state as initial conditions {z1(0) = zs(0), z2(0) = #5(0)}, we can establish the
relationship between step size and global error. When we use the pointwise error
in the root mean square sense, we are led to the results in Fig.3 which shows the
global error/step size relationship on a log/log scale. The rate of convergence on
a log/log scale is 4 in this problem; this coincides with the fact that an rth order
method should have a global error of O(h") in the absence of arithmetic errors.’
The critical value for step size is about 0.001; if h decreased below 0.001, then the

results deteriorate due to the round-off error. The exact solution of this benchmark
problem and simulation errors are shown in Figs.5 and 6. To study the robustness of

the convergence characteristics of Fig.3, we introduce relatively large perturbations
in the initial conditions and the nonautonomous term in the differential equation

as follows:
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5= —z —0.1(1 +2?)% + 0.1z + 1.25in3¢ (7)

where z(0) = 1.2 and £(0) = 0.2 over the interval 0 <t < 10.

After using the same procedure to vary the step size and therefrom we
obtain the global error/step size relationship shown in Fig.4. Notice that Fig.3
and Fig.4 are almost identical. In other words, both the critical value h and
the associated accuracy are essentially unchanged, even though we introduced
large(20%) perturbations in the initial conditions and in the forcing term of the
differential equation. Obviously these results are problem dependent, but a similar
process will provide the needed insight for other problems.

Now we apply this idea to an idealized three-body distributed parameter
system. The main difference is that there are two independent variables for space
and time. Therefore, the least square approximation method must be generalized
to deal with two independent variables. In order to obtain an approximate
candidate discrete solution, we use linear quadratic regulator(LQR) to design
control forces and we use the finite element approach for space discretization. From
this approximate solution, we construct a smooth, differentiable, analytical solution
which is physically meaningful. We investigate the exact space/time distribution
of errors of the numerical simulation using Newmark method with finite element
modeling.

A THREE-BODY DISTRIBUTED PARAMETER SYSTEM

Now we demonstrate the idea on an idealized three-body distributed parameter
system. With reference to Fig.7, we consider a rigid hub with a cantilevered flexible
appendage which has a finite tip mass. Table 1 summarizes the configuration

parameters of this flexible structure.

Table 1 Configuration Parameters of a Three-Body Problem

PARAMETER SYMBOL VALUE
Hub radius T 1 ft
Rotary inertia of hub Jh 8slug-ft?
Mass density of beam p 0.0271875 slug/ft
Elastic modulus of beam E 0.1584x10%° 1b/ft?
Beam length L 4.0 ft
Moment of inertia of beam I 0.4709502797x10~7 ft*
Tip mass my 0.156941 slug
Rotary inertia of tip mass Jt 0.0018 slug-ft?
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The appendage is considered to be a uniform flexible beam and we make
the Euler-Bernoulli assumptions of negligible shear deformation and negligible
distributed rotatory inertia. The beam is cantilevered rigidly to the hub. Motion is

restricted to the horizontal plane and we neglect the velocity component —yf, that
is perpendicular to the y direction. The control system is assumed to generate a
torque u acting upon the hub, a torque usp and a force fi;p acting upon the tip

mass, and a distributed force density f acting upon the appendage. We assume
small elastic motions viewed from the hub-fixed rotating reference frame. Overdots
denote derivatives with respect to time and primes denote derivatives with respect

to the spatial position.
The kinetic and potential energies of this hybrid system are as follows:

L
of = Tné + / o5+ (2+7)6}7] do + me(9(L) + (r+ L)6Y? + T{6 +3'(D)F(8)

L
2V = / (BI(y")*} de (9)

The nonconservative virtual work of this system is given by
L
Whe = {u +/ f(z)(z +r)de + (L + 7) frip + ttip}60
0
. (10)
+ / f(z)by de + fuipby(L) + waipby'(L)
0

Using an explicit version of the classical Lagrange’s equation for hybrid
coordinate distributed parameter systems!?, the governing differential equations
and the boundary conditions are obtained efficiently. '

- L . . -
Jh0+/0 p(z+7)(i +(z+7)8) dz+mt(L+7‘)((L+7‘)o+g(L)> + (6 +§'(L))

L -~

= vt [ fle)otr)de (L4 + v W
pli+ (e + 1)} + EIy™ = f (12)
BrZY | —omil(L 40 3D} + fup = 0 (13)

7L

62y T

EI—a——2 +Jt{9 + y'(L)} — Utip = 0 (14)

7L

Notice that if we knew an explicit, differentiable solution for the motion
variables {y(z,t),6(t)}, then the Egs.(11-14) can be solved directly and ex-
actly for the four corresponding time and space varying forces and moments
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{u(t), f(z,t), u1ip(t), frip(t)} thus yielding the desired inverse solution. Since we
are interested in physically meaningful problems, we do not wish to randomly guess
the solution {y(z,t),6(t)}. Motivated by the above results for ODEs, we will con-
struct an exact solution which is a near neighbor of a given approximate solution.
First we consider a conventional path to construct the approximate solution.

FINITE ELEMENT APPROACH

Using the FEM, the partial differential equations of the motion are transformed
into an approximate set -of second-order differential equations in terms of the
displacements, velocities, and accelerations of the finite element coordinates, and
the external forcing functions. Several finite element models for a flexible arm
are presented in Refs.[11] and [12]. In this section, we will develop a finite element
model for a hub with an appendage and a tip mass by using the extended Hamilton’s
principle that provides a variational weak form for the finite element model. It is
significant to note that we carefully introduce the finite element approximations in
such a way that large hub rotations are admitted; the FEM represents small elastic
displacements with respect to hub-fixed axis.

The application of the extended Hamilton’s principle yields

t2
/ (8T — 6V + §Wac)dt = 0, §0=6y=0 at t=tt  (15)
ty

Substituting Eqgs.(8-10) into Eq.(15) and integrating by parts gives

[ [ [+ i 1 (22)s(38) - o]
+ {/OL p(z +7)(§ + (= +7)8)de + Jub +my(L + ) (H(L) + (L +7)8)

+ {me(§(E) + (L +7)8) = fuip }u(D)
(| ) vl )] e
(16)

T
The displacement y(z,t) can be discretized using a finite element expansion

v L ~
+ §) - (u + /0 F()(@ +7)do + (L + 1) feip + aip) 168

L

13,14
4

y(z,t) = Y 9 (23 (1) (17)

=1

2096

30




where uge) ,u§°) (u§°),u§‘)) are transverse deflection and rotation at the left (right)

end of the element, and 'z,b‘(-c) are the Hermite cubic polynomial shape functions
which satisfy the conditions for the admissibility and that are defined over the

finite element.
The acceleration and curvature are expressed as follows:

4 2 4
. _ () (i) Py 9 (@ ()
e, = L H@AO0, g = > 57 (¥2@) 9w (8)
The following cubic functions are adopted as the shape functions for i-th finite
element4

Py =1 — 352 + 232, b = hT; — 2h3? + AT}

19
Wy =352 — 28},  a= —hZi + hE, z; = (z —=zi)/h (19)
where z; is the distance from the root of the appendage to the left end of the i-
th finite element, and k is the length of the finite element. These are the most
commonly used shape functions for one-dimensional beam elements.
Substitution of Eqs.(17-19) into Eq.(16) and carrying out the spatial integra-
tions yield the global mass, stiffness and forcing matrices. After some algebra, the
assembled matrix differential equation is as follows:

Jrn+ Mgg Mg, é + 0 0 6
Mue Muu 2 0 KVV v

Jo f<m>¢§l{{w§g)ff§"r }((i:wi”(m)dm |
0
A I [ i) (0)de + [2* fleys? (2)de
=1 fp o+
o 1 o lus) | JODF et (@)e + [l @) (2)de
o 0 ot o FE@ (2)de
| L f@ (2)de

(20)
where v is the coordinate which consists of the transverse deflection and rotation
at each node of the appendage, and the matrix elements of Eq.(20) are presented
in the Appendix.
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CONSTRUCTION OF A CANDIDATE DISCRETE SOLUTION

We can find a physically meaningful approximate solution by using any given
approximate forward solution process. For simplicity, we assume that only the hub
torque u(t) is non zero. Then Eq.(20) can be written in a linear second order matrix

form as follows:

M}"c+Kx=[

{1}

We design a typical control law using the linear quadratic regulator(LQR), and
modal coordinates are used to design controller. To perform the modal coordinate
transformation, the following open-loop eigenvalue problem should be solved first!®

(1)} u (21)

where

K¢, = Mg, i=1,2,-+,n (22)

with the normalization equation

¢T Mg, =1 i=1,2,---,n (23)
We introduce the modal matrix
& =[4,, 28, (24)
The general modal coordinate transformation is then
x(t) = @n(t) (25)

where 7(t) is the n. x 1 vector of modal coordinates.
The transformed equation of motion becomes

Mij + Kn = Du (26)
where

W =8TM& =1 K=238TK®=diag(0,w}wh,--,0l ), D= 3T [é]

Note that diagonal zero in K corresponds to the rigid body mode. For control
applications the system dynamics are usually modeled as first order state space
differential equations. We introduce the “2n” dimensional modal state vector

z={%} (27)
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Eq.(26) can be written as the first order system

2 = Az 4+ Bu (28)

SPHIESH

We adopted the following performance index for the LQR control design:

where

J= /oo(zTQz + uT Ru) dt (29)
0

with

where Q = diag(q,w?, -+, w2_;)-

The above performance index is an energy type, since the first term and second
term in the performance index corresponds to the state energy and the control
energy respectively.

By solving the Riccati equation’®, the optimal feedback control is obtained

u = —gz (30)

Now we can solve the initial value problem using a time discretization pro-
cess(e.g. Runge-Kutta) and through Egs.(17,25,30) we obtain g(zi,ti), 6(t;) and
#(t;), at discrete pointsin space and time. The approximate motion {f(x:, ), 6(t:)}
corresponds to the system response to a hub torque designed to maneuver the sys-
tem and arrest vibration.

CONSTRUCTION OF A BENCHMARK PROBLEM

We want to construct a continuous, differentiable, analytical solution that has
physical meaning. A candidate discrete approximate solution for the hybrid system
can be obtained using any given approximate forward solution process and a given
controller. This approximate solution can be used as a generator for a nearby
smooth space/time motion for which we can determine the exact forces(required to
be consistent with this prescribed motion and the exact equations of motion). Least
square approximation associated with using the discrete version of the Chebyshev
polynomials can be invoked to obtain the smooth motion f(z,y) solution from
the discrete solution. While we invoke a least square approximation to construct
the smooth f(z,y) from an already approximate discrete solution, we subsequently
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determine the modified forces to be exactly consistent with this motion f(z,y). We
first consider the least square process.
There are n' X m' discrete data points such as

211 = f(fcl,yl), 212 = f(zl,yz), ttry Zlm! T f(-’cl,ym')
201 = f(z2,91), 222 = f(22,%2), --» 22m = f(Z2,Ym)
Znt)] = f(mn'vyl)v Zn'2 = f(m‘n')y‘l)v ety Znim! T f(zn’,ym')

where z;, y; are equally spaced independent variables.

How can we reliably compute a continuous, differentiable, analytical function
f from the data points in the least square sense? Analogous to the ODE case, we
elect to make use of discrete orthogonality. We nondimensionalize (z,y) using

r— = y—y
3(a) = —— )= -
z y

where hg, hy are the increments of = and y respectively.
z= f(:n,y) = F(ifg)

From two-dimensional n' x m' data points, the function F' can be approximated
by p X ¢ two-dimensional basis functions that come from the discrete version of the
Chebyshev polynomials {weight function w(z) = 1] as follows:

F(z,9)= Y, > biTdz)T5(3)

=1 j=1

where p < n', ¢ < m' and T.(*) is the univariate Chebyshev polynomial in the

discrete range.

We use the previous definition of Chebyshev polynomials and the recurrence
relation. Using discrete orthogonality properties of Chebyshev polynomials, the
typical coefficient b, can be obtained as follows:

_ Z:il E;r;’l zi; Tr(Z:) Ts(55)
S S Te(&:) To(35) Tr(2:) T (95)

where 1 <r<p, 1<s<q.

We can find f(z,y) from F(Z,3), since f(z,y) = F(z(z),3(y))-

Using the previous method associated with the Chebyshev polynomials, we
interpolate a smooth differentiable function yp(z,t) as a two-variable orthogonal
function expansion which passes near the §(z;,t;) points. Similary, we can interpo-

late a smooth differentiable function 8;(t) from 6(t;) data points. Since ys(z,t) and

brs
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85(t) are smooth, differentiable functions, we can force them to be exact solutions
of our dynamical model by simply substituting ys(,t), 05(t) and their space/time
derivatives into Eqgs.(11-14) and solving the four equations analytically for four new

forces {u(t), f(z,t), wup(t), fup(t)} which satisfy these equations exactly. Com-
puter symbol manipulation makes this process possible.

SIMULATED RESULTS

First we find a candidate discrete solution for the enlarged time interval
(1 < t < 2) with initial conditions §(—1) = 0.1rad and y(z,—1) = 0 for all =. We
use LQR to design control force @(t) and use the finite element approach for space
discretization. Here we use 1 for ¢ of Eq.(29) and use the configuration parameters
as shown Table 1. Then we construct a benchmark problem for time interval
(0 < t < 2). Figures 813 show ys(z,t), 0s(t), u(t), F(z,1), wsip(t), and fuip(2)
which satisfy Eqs.(11-14) exactly. Note that even though we use the enlarged time
interval and have good interpolations for 6,(t) and ys(z,t) near the boundary, there
exists relatively large error for control forces, near the boundary, compared to the
nonlinear ODE cases. This is due to the fact that we have two independent variables,
time and space, and have coupling terms which are time and space derivatives of
ys(z,t) in the evaluation of control forces. In contrast to enlarging the time interval
for ODE problems, it is neither physically nor mathematically meaningful to enlarge
the spatial domain. As will be evident, this is a minor problem, and does not prevent
us from establishing “exact” benchmark problems.

Finite element approach gives us Eq.(20) and for simulation we use step-
by-step solution using Newmark integration method. Given initial conditions
{y(z,0) = ys(z,0), 6(0) = 6,(0)} and force functions {u(t), f(z,t), veip(t), frin()}s
the approximate simulation of this structure’s dynamics {ys(z,t), 8:(t)} can pro-
ceed. Figure 14 shows the space/time error distribution ey (z,t) = ys(z,t) — ys(z, 1)
when we use 20 finite elements and 0.002 sec. for step size.

Second we find a candidate solution for the enlarged time interval (0 < ¢ < 0.1).

Initial condition for @ is 0.1rad and the third natural mode of this flexible structure
is used for y(z,0). We use LQR to design control force 4(t) and FEM is used for

sapce discretization. Here we use 100 for ¢ of Eq.(29) and use the configuration
parameters as shown Table 1 except m; and J; (m;=0.256941, J;=0.0028). Then
we construct a benchmark problem for time interval (0 < ¢ < 0.08), i.e., we have
new set ys(z,t), 85(t), and {u(t), F(z,1), uip(t), frip(t)} which satisfy Eqs.(11-14)
exactly. ‘

Now we can investigate the convergence errors in a family of approximate
solutions with special case absolute standards. When we use the Newmark
integration method with finite element modeling, the convergence and accuracy
behavior is studied as a function of the number of finite elements and the integration
step size. Figure 15 shows the error norm ||eq|| and ||ey|| for various mesh sizes for
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a fixed integration step size on a log/log scale. Figure 16 shows the error norm
||les|| and ||ey]| for various integration step sizes for a fixed number of finite elements
on a log/log scale. The error norm distribution of 8 and y is shown in Figs.17, 18
respectively, as a function of DT(time step size) and H(mesh size).

Here we introduce the following definitions for the supmelric error.

“eo(iv)“Lz(o,T) = {/f ea(t)’dt}%

T L -:.
lley(z, )Lz (o, 1502 = {/ / ey(z,t)zdz dt}
o Jo

where eg(t) = 05(t) — 0b(2)-

The relative errors are defined as follows:

_ ”eo(t)“L’(o,T) RE. = ”ey(z:t)“m(o,T;L’)

RE, = teo)iemn =
18l z2co,m ¥ ly(=s )l 2o,z

We observe that the rate of convergenceis 2 in At(decrease DT to reduce error
measure) and 4 in h(decrease H to reduce error measure) from Figs.15 and 16, except
for the small(At, h) region where arithmetic errors dominate and provide computer
limitations to accuracy. It is this latter insight that is essentially impossible to
obtain by pre-existing methods, but is easily established by the methods of this
paper. We should be careful in saying that adjusting h (to achieve accuracy) is less
expensive than adjusting At, because the rate of convergence of 4 in h and the rate
of convergence of 2 in At does not guarantee this fact. Each approach to improving
accuracy results in different amount of computational load, which depends on the
specific program. From Figs.15-18, we can also notice that if H is too crude then
At reduction does not improve the solution and if DT is too big then h reduction
does not improve the solution. The numerical results indicate that the minimum
value of REp is 0.7 x 10~7 (when H=0.2 and DT=0.00002) and the minimum value
of RE, is 0.3 x 1073 (when H=0.4 and DT=0.00005). We know of no method that
could give this insight before the introduction of the present method.

We construct a neighboring benchmark problem to investigate the robustness of
the convergence characteristics of Figs.15-18. To construct a neighboring benchmark
problem, first we find a candidate discrete solution with the following initial
condition and forcing function 4(t). Comparing to the previous case, we make a 10%
increase of the initial condition y(z,0) and arbitrarily add a sinusoidal perturbation
term 0.4186sin(2mt/0.08) to the previous hub control i(t) for a new perturbed hub
control. The error norm distributions of the perturbed case are almost identical
to the previous problem. So we can conclude that the convergence and accuracy
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properties of this approximate solution process are indeed relatively invariant in the
presence of these finite perturbations, in this case.

SUMMARY AND CONCLUSION

The present paper introduces an inverse dynamic method for constructing exact
special case solutions for hybrid ODE/PDE systems. A multi-variable orthogonal
function expansion method and computer symbol manipulation are successfully used
for this process. The hybrid ODE/PDE systems with exact solutions can serve as a
benclimark problem to validate approximate solution methods. This methodology
makes it possible for one to rigorously determine exact solution errors and to study
the convergence and accuracy behavior as a function of tuning parameters for
a class of ODE/PDE systems for which the initial value problem is not exactly
solvable. Numerical examples indicate that a rigorous error analysis is obtained not
merely for one nominal solution, but for a substantial neighborhood of the nominal
solution. By constructing a family of neighboring benchmark problems, one can
obtain valuable information about the convergence and accuracy properties that
are relatively invariant with respect to perturbations within a known bound.
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APPENDIX
Submatrix Elements of Finite Element Method

The. local mass and stiffness matrices of the i-th element of the appendage is defined
as follows:

y h M, My o122 0
MO = | M, Mi, M| KP=|0 K} Ki

] 1 1 i i
M31 32 33 0 K32 33

where

. h
M, = ﬁ—{(:c,- +7) 4 (zi+r+h)(zi )+ (zitT +h)*}

3
2= M5,)T = ph{zgh + Hzit+ 1) 3’13h2 + S h(z: + 7))
Mia = [M?n]T = ph[%h + %(‘Ei +7) - 513h2 - il—z—h(:z:,- + 7‘)]
; _ ph [186 22k f o ]T__;i 54 —13h
22 7 290 {22k 4R% |’ 23 = M2l = o0 1 13R —3A?
; _ ph [ 156 —22h
337 490 | —22h  4A?

; ; EI'|-12 6h
T « T _ %
6h 4h2} b K23 - [K32] - h3 [_Gh 2h2}

i [ ———
22 — h3

i
33 — 3
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where z; is the distance from the root of the appendage to the left end of the i-th
finite element,  is the radius of the hub, and h is the length of the finite element.

The matrix due to the tip mass is defined as follows:

Mt Mt
M, = 11 12}
‘ [Mél M3,

where
‘ Mi; = Jo +mu(r + L)?
Miz = [M;I]T = [mt("' + L) Jt]
e _|me O
M22 - [ 0 Jt]

(20) can be defined as follows:

Now, the submatrices in Eq.

N
Mge = Z M}, + My,

=1
Mg, = [Mis + M2, Mi;+Mi, M3, + M1, M+ MY, M5+ Mj,]
M3, + M3, MZs -1

M2, M3 +M3 M
M3, M +M5 Mi

Mvv -
L My-T Mi? ; ML, NMQQ t
M3} M33 + M3, ]
" Kis + K3, K3s )
K3, K3, + K3, K3,
K3, K3, +K§, Kz
va =
KN-1 KN'+KY KR
N Ké\g ]

I K%,

where N is the number of finite elements.
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LINEAR QUADRATIC REGULATOR PROBLEM
WITH INEQUALITY CONTROL CONSTRAINTS
FOR FLEXIBLE SPACE STRUCTURES

Sangchul Lee* and John L. Junkins!
Tezas ASM Universily, College Station, TX 77843

Abstract

We consider the simultaneous slewing and vibration
suppression control problem of an idealized structural
model which has a rigid hub with two cantilevered flexi-
ble appendages and finite tip masses. The finite element
method(FEM) is used to obtain linear finite dimen-
sional equations of motion for the model. In the linear
quadratic regulator(LQR) problem, a simple method is
introduced to provide a physically meaningful perfor-
mance index for space structure models. This method
gives us a mathematically minor but physically impor-
tant modification of the usual energy type performance
index. A numerical procedure to solve a time-variant
LOR problem with inequality control constraints is pre-
sented using the method of particular solutions.

Introduction

The problem of simultaneous slewing and vibration
suppression of large flexible space structures has been
the focus of intense research’~*. Since Large Space
Structures(LSS) are mechanically flexible systems, they
are most generally described as hybrid coordinate dy-
namical systems. Their motion is described by a cou-
pled system of ordinary and partial differential equa-
tions. The corresponding nonlinear integro-differential
equation of motion are usually linearized, discretized in
space, and truncated to a finite number of modes. The
assumed mode method and the FEM are widely used
for obtaining discretized linear equation of motion for
large flexible structures.

Several approaches to associated control of LSS have
been investigated. The linear quadratic regulator and
associated tracking problems have been treated success-
fully and represent an important class of optimal con-
trol application®. In the LQR problem, the choice of
performance index is very important and problem de-

« Graduate Student, Department of Aerospace Engi-
neering. Student Member AIAA.

{ Eppright Chair Professor, Department of Aerospace
Engineering. Fellow AIAA and AAS.

Copyright ©1994 by John L. Junkins. Published by the
American Institute of Aeronautics ans Astronautics,
Inc. with permission.
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pendent task. Usually LQR problems are considered
without any bounds for states and controls. If there are
inequality constraints on the controls, however, then
Pontryagin’s minimum principle could be applied to
find the necessary conditions for optimality. Unfor-
tunately, the resulting equations from the optimality
conditions give us nonlinear differential equations even
though the original system of equations is linear®. For
this reason, we can not determine controls analytically.
Rather, we must attempt to find the solutions by an
iterative numerical procedure.

In this paper, we consider the simultaneous slewing
and vibration suppression control problem of a rigid hub
with two cantilevered flexible appendages which have fi-
nite tip masses. The FEM is used to obtain linear finite
dimensional equations of motion for the flexible space
structure model. We introduce a simple method which
provides a physically meaningful performance index for
space structure models. This method gives us a mathe-
matically minor but physically important modification
of the usual energy type performance index. A numer-
ical procedure to solve a time-variant LQR problem
with inequality control constraints is presented using
the method of particular solutions”8. We also present
simulated results to explore the utility of this method.

Finite Element Modeling

Using the FEM, the partial differential equations
of the motion are transformed into an approximate
set of second-order differential equations in terms of
the displacements, velocities, and accelerations of the
finite element coordinates, and the external forcing
functions. With reference to Fig.l, we consider 2
rigid hub with two cantilevered flexible appendages
which have finite tip masses. Table 1 summarizes
the configuration parameters of this flexible structure.
The appendage is considered to be a uniform flexible
beam and we make the Euler-Bernoulli assumptions of
negligible shear deformation and negligible distributed
rotatory inertia. The beam is cantilevered rigidly to
the hub. Motion is restricted to the horizontal plane
and we neglect the velocity component —1f, that is
perpendicular to the y direction. Several finite element
models for a flexible arm are presented in Refs.[9]
and {10]. In this section, we present a finite element



model for the model by using the extended Hamilton’s
principle that provides a variational weak form for
the finite element model. It is significant t{o note
that we introduce the finite element approximations
in such a way (co-rotational coordinates) that large
hub rotations are admitted; the FEM represents small
elastic displacements with respect to hub-fixed axis.

Fig.1 A five-body hybrid coordinate system

Teble 1 Configuration Parameters

PARAMETER SYMBOL VALUE
Hub radius T 1ft
Rotary inertia of hub Jr 8 slug-ft2
Mass density of beam P 0.0271875 slug/ft
Flastic modulus of beam E 0.1584x 10 1b/ft?
Beam length L 4.0 ft
Moment of inertia of beam I 0.4709503x 10~ 7 ft*
Tip mass my 0.156941 slug

Rotary inertia of tip mass Je 0.0018 slug-ft?

The application of the extended Hamilton’s principle
yields

ts
§T — 6V 4 6Wae)dt =0
f.¢ ) )

56 =6y =0 at t=1ty,t

The displacement y(z,t) can be discretized using a

finite element expansion'!'?
4
yz,t) = Y@ (2)
i=1

where UI'),ugc) (ugc),uge)) are transverse deflection and
rotation at the left (right) end of the element, and
¢E€)(z) are the Hermite cubic polynomial shape func-
tions, defined over the local element, which satisfy the
conditions for admissibility.

Specifically, the following cubic functions are
adopted as the shape functions for the i-th finite
element!?

P = 1 — 32% + 22, ¥ = hi; — 2hE? + ha}
g = 382 — 283,  $a= —hEl +h3] (3)
i =(z—zi)/h

where z; is the distance from the root of the appendage
to the left end of the i-th finite element, and h is
the length of the finite element. These are the most
commonly used shape functions for one-dimensional
beam elements.

As a consequence of the space/time separation implicit
in Eq.(2), the acceleration and curvature are expressed
as follows: '

.4 3 (@) (1)
()

2 t g2
Py =3 2 (10@)

After some algebra, the assembled matrix differen-
tial equation is as follows:
Jh+2M99 2Mg, 9 + 0 0 6
oM,s  2M,. ) \© 0 2K..| v

where v is the coordinate which consists of the trans-
verse deflections and rotations at each node of the ap-
pendage, and we assume symmetric deformations of the
appendages. The matrix elements of Eq.(5) are pre-
sented in Ref.[13]. The control system is assumed to
generate a torque u acting upon the hub and a torque
ugip acting upon the tip mass.

LQR with Inequality Control Constraints

We introduce a method to find a physically mean-
ingful performance index. First Eq.(5) can be written
in a linear second order matrix form as follows:

1 2
0 0

Mx+Kx=1. . {u} where x:{o}
T Utip v
0 2

(6)

Modal coordinates are used to design the controller.

To perform the modal coordinate transformation'?,

32




the following open-loop eigenvalue problem should be
solved first

Kq_S‘.::,\,-Mfi_;‘. i=1,2,--

n M
with the normalization equation

?_:.I'Mﬁ.:l 1=12,---

s (8)
We introduce the modal matrix
Q:[Ql,q_Sz,-u,q_Sn] )
The general modal coordinate transformation is then
x(t) = <I>2(t) (10)

where 7(t) is the n x 1 vector of modal coordinates.
The transformed equation of motion becomes

M#i+ Rn=Du (11)
whers
M=9TMe=I
i = 3®TK® = diag(0,w}, w3, -+, wi_y)
1 2
D=7 0 0
0 2

Note that diagonal zero in K corresponds to the rigid
body mode. For control applications the system dy-
namics are usually modeled as first order state space
differential equations. We introduce the “2n” dimen-
sional modal state vector z = {f 71} T, then Eq.(11) can
be written as the first order system

z = Az + Bu (12)

where

0 I 0
A= - n = =
[ 5] =13l
Now the kinetic energy and potential energy are as
follows:

T=13"Mx, V= %x’-’xx (13)

Usually we include the position feedback control-
induced potential energy term -12-1«7902 since we expect
the control to drive @ to zero. We introduce a new

weighting matrix Q in the performance index J as
follows:

1 [
J= 5/ (a1 xT Mx + a;xT Kx + kof? + u” Ru)dt
V]

= %/ ’(zTQz+uTRu)dt
° (19

83

where

_ azq’Tf{Q 0 B = ko 0

- 0 alln ! - 0 2va
Note that the usual energy type performance index
adopts diag(q,w?,w3,...,wh_;) instead of PTK® as
the upper left submatrix of Q.

We assume that the control is constrained in mag-
nitude by the relation
lui () <1 1=4L2,--,m (15)
Note that the B matrix of Eq.(12) and the R matrix
of Eq.(14) can be defined to obsorb the normalization
uj,_ ., to allow the normalized magnitude of »;(t) to
have a unity saturation limit, without restriction.
The Pontryagin’s minimum principle consists of the

state and costate equations and the optimality condi-
tion as follows:

3" = Az" + Bu’
p'=-Qz — ATp’
H(z",u",p",t) < H(z",u,p",t) forell admissible u
(16)
where H is the Hamiltonian function.

The solution of the open-loop problem which rep-
resented by Eqs.(12,14,15) must satisfy the following
nonlinear two point boundary value problem(TPBVP)
derived from Pontryagin’s minimum principle®. The
detail proof of Eq.(17) is in the Appendix.

7 = Az* — BSAT(R™'BTp*) (17)
p = —Qa" — ATp"
where p is the costate vector and sat(y;) is defined that
sat(y) = v if Jw| < 1 and sat(y;) = sgn(y:) if
ly:] > 1, and SAT() is a similar vector valued function.
When the initial condition of z"(t) and the terminal
condition of p(f) are assigned as z°(0) = Zo and
p(ts) = hz"(t5), the method of particular solutions
associated with a quasi-linearization method gives us
the open loop optimal solution.

Method of Particular Solutions

A general technique for solving nonlinear TPBVPs
was presented in {7,8]. The method of particular solu-
tions and an associated quasi-linearization method are
summarized and then applied to LQR problems with
inequality control constraints.

First consider the linear differential system

¢=Fv+DE)  o<t<t  (18)



with the boundary conditions

vi(0) = o 1=1,2,--.,n (19)
Cv(ty)=p (20)

where C is a known n X 2n matrix and § is a known
constant vector.

Let vi(t) ( = 1,2,---,n+1) denote n+1 particular
solutions obtained by forward numerical solution of
Eq.(18) with the following n+1 sets of initial conditions;

V{(O):‘:a,« i=1,2,---,n 7=12,---,n+1

k=1,2,---,n j=12,---,n+1

(21)

vl (0) = &5k

where & is the kronecker delta.
Due to the linear property of Eq.(18), we can com-
bine the n + 1 particular solutions to obtain another

solution
n+l

v(t) = Z kj vi(t) (22)

Th: unknown coefficients k;’s are determined in
such 2 fashion that the solution v(t) satisfies the bound-
ary conditions of Eq.(21). From the initial and terminal
conditions, we obtain the following equations.

n+41l

Z kj =1

i=1

n+l ) (23)
CY kvi(t)=8

i=1

Equation (23) constitutes n+1 equations which can
be solved to determine the n + 1 k;’s. The solution is
then obtained by recombining the individual particular
solutions according to Eq.(22).

Second, consider the nonlinear differential system

v = f(v,1) 0<t<ty (24)

with the boundary conditions
vi(0) = o 1i=1,2,--,n (25)
U(v(ty)) =0 (26)

Equation (24) is linearized about a nominal solution
v (t). The linearized equations are given by

d

Vn + OV = f(Va,t)+ [a—f- ! ]Av (27)
Y lva(o)

where AAv are corrections to the nominal solutions.
Eq.(27) is rewritten as follows

Av = [ﬂ

ov

ISERCCELN I
va(t)

If v, (t) is selected such that the initial conditions of
Eq.(25) are satisfied exactly but the terminal conditions

of Eq.(26) are satisfied only approximately, then the
boundary conditions are as follows:

Avi(0) =0 i=1,2.---,n
|5 . )] avity) = —¥(valty) )

Then, Eqs.(28) and (29) constitute a linear differential
system and can be solved by the method of particular
solutions. In order to avoid numerical differentiation
v, in Eq.(28), we can rewrite Eqs.(28) and (29) using
v = vp + Av as follows:

v..(t,]‘"' + {f(Vn.t) - [g—{, lv"(t)] v,,} (30)

with boundary conditions

2 [31’

V:E

vi(0) = o 1=1,2.---,n
v - A\
2] Jown=[5] vt vt
v v
va(ty) va(ts)

(31)
The solution ¥(t) becomes a new nominal solution
v (t).
Now, we consider the nonlinear TPBVP of Eq.(17)
with boundary conditions. Let

)

\7;(0) = Zy;
[-—h In]fr(if) =0

Then
i=1,2,---,n

(32)

To obtain the linearized differential equation, we
need [g'élv..(t)] of Eq.(30). For the case of the LQR
problem with inequality control constraints, [%{-Iv"(g)]
can be obtained easily by the following procedure.

By the presence of SAT function in Eq.(17), first we
evaluate the mx 1 vector R='BTp=. If |(R~!BTp");| <
1forallj =1,2,---,m, then the nonlinearity of Eq.(17)
disappears, so obviously

[af [ 4 —BR"BT]
™ .l L@ —-AT

If there are j’s such that [(R~!BTp");| > 1, then we
define & m x n matrix Y. This matrix is basically
R-1BT but each j-th row is replaced by a zero row
vector when j is the index such that [((R-'BTp*);| > 1.

Then,
af | A -BY
[5‘_’_ v“(l)] B {“Q —AT] (33)

Substituting Eq.(33) into Eq.(30) gives us a linearized
differential equation.

K4




Simulated Results

We consider the previous flexible structure with
reference to Fig.1 and use the configuration parameters
as shown Table 1. The discretized equations of motion
are presented in Eq.(5). Here we use 3 finite elements
and time interval (0 < t < 1) with initial conditions
6(0) = 0.2 rad and y(z,0) =0 for all z. We use 1 for
a, and a3, 100 for kg, diag(5,50) for R of Eq.(14). We
assume that the controls are constrained in magnitude
as follows:

[u(t)] <04  and lup(t)] < 0.015

Figures 2-5 show 6(t), Yip(t), u(t). and ugip(t) for
both cases (constrained control case and unconstrained
control case). The first four state and costate histories
of the constrained control case are shown in Figs.6 and
7 respectively. Figure 7 shows that the costates satisfy
the terminal condition p~(ts) = 0.
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= N
£ 0.195} ~
= i >
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\
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0 0.2 0.4 0.6 0.8 1
Time(sec)
Fig.2 Hub angle 6(t)
0.01 y T T
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Fig.3 Tip deflection yip(t)

Hub Torque
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Fig.4 Torque acting on hub u(t)
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-0.01F

Tip Torque
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-0.025 . + + .
0 0.2 0.4 0.6 038 1
Time(sec)

Fig.5 Torque applied at tip mass ueip(t)

Summary and Conclusion

The present paper introduces a simple method which
provides a physically meaningful performance index for
space structure models in the LQR problem. This
method gives us a reasonable modification of the usual
energy type performance index. A numerical proce-
dure is presented to obtain open loop solution of the
time-variant LQR problem with inequality control con-
straints, using the method of particular solutions incor-
porated with a quasi-linearization technique. This ap-
proach does explicitly consider control saturation con-
straints and therefore represents a generalization of
the standard(unbounded) control assumptions for LQR
problems. Numerical results are presented which shows
the utility of the method, using the idealized struc-
tural model which has a rigid hub with two flexible
appendages and finite tip masses.
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Appendix

The LQR problem of Eqgs.(12,14,15) can be written
as the nonlinear TPBVP of Eq.(17) using the Pontrya-
gin’s minimum principle.

Pontryagin’s minimum principle:

z* = Az" + Bu® (A1)
p*=-Qz — ATp" (A2)

H(z*,u",p",t) < H(z",u,p", t) for all admissible u
(A3)

where I is the Hamiltonian function.

From Eq.(A3) %(u‘, Ru*) + (Bu",p7) < %(u, Ru) +
(Bu,p") hold for all u such that |uj(t)] < 1 J
1,2,.--,m.

Let us define w* as w* = R~!BTp", then

%(u', Ru™) + (u*, Rw™) < —12-(u, Ru) + {u, Rw™)

Now we add {w~, Rw") to both sides,

%(u' ,Ru”) + (u", Rw™) + %(w', Rw*)

< %(u, Ru) + (u, Rw™) + %(w‘, Rw™)

((u”+w"), Ru +w")) < ((u+w"), R(u+w")) (44)

for all u such that |u;| < 1 where j =1,2,-.-,m.
—w} if lwj[ < 1 and

Equation (A4) implies that uj
wj = —sgn{w;} if fwil > L.

To prove above statement, we proceed as follows:
a=u+w

Equation (A4) implies that the function ¥(u) = (a, Ra)
attains its minimum at a® = u” + w".

Since R is positive definite, the eigenvalues of R are
positive for all t.

Let D be the diagonal matrix of the eigenvalues. D =
PT RP where P is an orthogonal matrix.

¥(u) = (a, Ra) = (a, PDPTa)
= (PTa, DPTa) = (b, Db)

=Y 4 8
i1=1

where b = PTa.



]

Since P and PT are both orthogonal, (b,b) = (a, a)
equivalently

SE-3a (a9
=1 i=
Now we establish the relations
min ¥(u) = min(a, Ra)
— : Cp2 12
= bgl;guz:ld, bj = ZldJ n’;inbj (AG)
J= J:

Equation (A6) implies that if a* minimizes (a, Ra),
then the components bf,b3,:--,b;, also minimize the
scalar product (b, b) where b = PTa.

In view of Eq.(A5), we may conclude that the vector
PPTa" = a* minimizes the scalar product (a, a).
Therefore, if {(a*, Ra") < (a, Ra) then (a",a") < (a,a).

88

We can reverse our reasoning as follows:
If (a*,a*) < (a,a) then (a°, Ra") < (a, Ra).

We know that
(a,8) = ((u+w*), (u+w)) =D (w5 +wj)
j=1

m

We can deduce that min(a,a) = Z

ji=1
To minimize the positive quantity (u; +w; )2, one must
set

. . - 2.
B “i)

u; = —w; whenever jw| <1
uj = +1 whenever w; < -1
u; = —1 whenever w]'- >1 -
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Introduction

I N the recent literature, an asymptotic stability theorem! for
autonomous and periodic nonautonomous systems was
used 1o prove the global asymptotic stability of the mass-
spring-damper system and the damped Mathieu system. For
such systems, the application of LaSalle’s invariant set theo-
rem? has been the conventional approach adopted to prove the
global asymptotic stability. When the derivative of the Lya-
punov function? vanishes, LaSalle’s theorem?® requires us to
show that the maximum invariant set of the system consists
only of the equilibrium point at its entry. Although it is always
simple to identify the set of points Q where the derivative of
the Lyvapunov function vanishes, the maximum invariant set
I CQ is not always easy to identify. The main challenge of

Received Aug. 15, 1992; revision received Jan. 4, 1993; accepted
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LaSalle’s theorem? is therefore to sort out the maximum in-
variant set. For a distributed parameter system the dynamics
are described by a hybrid set of ordinary and partial differen-
tial equations. For such a system, the sorting out of the maxi-
mum invariant set is not a trivial task. In such a situation it is
useful to apply the theorem in Ref. 1 so as to comment on the
asymptotic stability of the system.

The distributed parameter system consisting of a rigid hub
with one or more cantilevered flexible appendages has ap-
peared in the technical literature quite frequently (see Refs. 4,
5, 6, and 7). The system described in Fig. 1 consists of four
appendages that are identical uniform beams conforming to
the Euler-Bernoulli assumptions. Each beam cantilevered
rigidly to the hub is assumed to have a tip mass. The motion
of the system is confined to the horizontal plane and the con-
trol torque is generated by a single-reaction wheel actuator.
Under the assumption that the system undergoes antisymmet-
ric motion with deformation in unison (see Fig. 2), a class of
rest-to-rest maneuvers was considered in Ref. 4. For the partic-
ular Lyapunov function considered, the best choice of the
control input only guaranteed the negative semidefiniteness of
the derivative of the Lyapunov function. To conclude the
global asymptotic stability using LaSalle’s theorem, it would
be necessary to formally prove that the maximum invariant set
consists only of the equilibrium point. The global asymptotic
stability of the system was claimed in Ref. 4 in the absence of
this proof.

In this Note we consider the hub-appendage problem* with
modifications. The modeling and successful control of such a
system is expected to provide us with insight into the modeling
and control of a general class of distributed parameter sys-
tems. Using a Lyapunov function approach and the asymp-
totic stability theorem in Ref. I, we prove that global asymp-
totic stability of the system is guaranteed provided the system
undergoes antisymmetric motion with deformation in unison.
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In other situations, such as symmetric motion with deforma-
tion in opposition (see Fig. 2), such a conclusion cannot be
drawn.

Theorem on Asymptotic Stability
Consider the nonautonomous system

i=f (6 x0) M

where f:R, x D—R" is a smooth vector field on R, xD, D
C R" in the neighborhood of the origin x =0. Let x =0 be an
equilibrium point for the system described by Eq. (1). We now
state the theorem on asymptotic stability.'

Theorem. 1) A necessary condition for stable nonau-
tonomous systems: Let V(f, x) : R, xD—R, be locally posi-
tive definite and analytic on R, X D, such that

, av 14
(e, x) 8 =t (—a—;>[(1.x)

is locally negative semidefinite. Then whenever an odd deriv-
ative of V vanishes, the next derivative necessarily vanishes
and the second next derivative is necessarily negative semi-
definite. 2) A sufficient condition for asymptotically stable
autonomous systems: Let V(x):D—R_ be locally positive
definite and analytic on D, such that ¥'<0. If there exists a
positive integer & such that

[T P) vx #0: Vi =0
{ (x) X (x) @)

Vi(x)=0 for i =2,3,...,2k

where V™*I(x) denotes the (x)th time derivative of V with re-
spect to time, then the system is asymptotically stable. How-
ever, if VU(x)=0, vj=1, 2,...,, then the sufficient condi-
tion for the autonomous system to be asymptotically stable is
that the set

S={x:V(x)=0, Vj=1,2,... ]
contains only the trivial trajectory x =0.

Hub-Appendage Problem
This example is taken from Ref. 4 with some modifications.
The hybrid system of ordinary and partial differential equa-
tions governing the dynamics of the system, which has already
been described in the introduction, is

d¥ b
Ihubat_z =u +EI(M0"’510) 3
!
Ay,  d% a2y |\
—(Mio—rSi) = SfX('gﬁ‘ +xa75) dx +m[(1-(ﬁ+5'2i />
i=1,2,3,4 (@
a2y, d* a*y;
——+x— |+ El[— =0, i=1,2,3,4
p <a:2 Xdﬂ) axt ! )

The boundary conditions on Eqs. (3-5) are

a.
v,y =2 =0,  i=1,2,34 ©)
ax |,
az)’i
=0, i=1,23,4 7
|, i )
3%y; m [ d¥ &y;
2 S Z =+ 22 ), i=1,2,3,4
8_\'3‘, El<d:2 ar? ,) ! ®)
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M e M.o
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510

Noution of forces and moments

Fig. 1 Distributed parameter autonomous system consisting of a
rigid hub with four cantilevered flexible appendages.

I PALS]

ys(x.lll

| S Y (x.1)

Fig. 2 Antisymmetric and symmetric motion of the system consist-
ing of a rigid hub and four flexible appendages: A is the antisymmetric
motion (deformation in unison), y1(x, t)=y(x, 1) =y3(x, t)=ys(x,
t) and B is the symmetric motion (deformation in opposition), y1(x, f)
= —ya(x, 1), y3(x, 1) = —ya(x, 7).

The state of the system is described by a hybrid set of dis-
crete and continuous variables:

amw),mmﬂﬁ

Z=16,0, ), ..., 1),
{ yi(x, 1) Yal(x, t) Py Y

We choose the Lyapunov function V as

4 [ ) 2
V=%1.,u.,02+ "—22-(0—9,)2+% > H p@’i +x6> dx
i=1 r

i1
alyi\? RS
+§,El<-(§z'> dx + m(10+5 / (10)

to derive control laws that will drive the system to its desired
state Zyesirea =07, 0, 0,...,0,0,...,0). In Eq. (10}, a,, ay, and



J. GUIDANCE, VOL. 16, NO. 6:

a, are positive constants. It can be shown* that the choice of
u(t) as

4
u= —(l/a,)[az(O—G,) + a6+ (a;~-a)) Z:l (’SiO_MiO)]
a,>0 ()

in Eq. (3), leads to V= —a,8*. Clearly, V is negative semidef-
inite and is equal to zero if § =0. To check for the asymptotic
stability of the system using the theorem in Ref. 1, we first
compute the higher-order derivatives of V. We find that when
=0, the following always holds

ek = kg fek+ D2 =0, §=1,2,...,2k (12)
for some positive integer k. In Eq. (12), ¥ denotes the (*)th
time derivative of V, and 6'*! denotes the (#)th time derivative
of 6. Using Eq. (12) and the sufficient conditions of the asymp-
totic stability theorem,! we conclude that the system is globally
asymptotically stable if 6%'#0 for any positive integer k. In
other words, if ¥'=0 at some time 7 = T, then the system will
be globally asymptotically stable if § is not a constant for all
t=T, and is a constant only at the equilibrium point.

We now investigate the case where § is a constant at a point
other than at the equilibrium point where Z#Z,. Let this
constant be 8. Then Eqs. (3-3) simplify to

4
u- Y (rSip-Mj)=0 (13)
i=1
% a:vi B:V,-
—Mp—rSi)=\ px—dx+ml—5], i=1,2,3,4
g, ar- ars |y
(14)
3%y, 3%y, '
— +EI— =0, i =1, 2,3,
paf2 BX"O i=1,2,3,4 (15)

The boundary conditions given by Egs. (6) and (7) remain
unchanged, but the boundary condition given by Eq. (8) sim-
plifies to

¥y
ax3

maz,-

=53 i=1,2,34 (16)
{

;
Also, the input to the system u(r) defined by Eq. (11) can be
simplified, using Eq. (13), to

4
u =3 (rSp—My) = %2' (8;—6c) & C = const 7
i=1 3

4
If we define Y=Y, y;, then Eq. (17) implies
i1

réi-}-, 62_}’ = £ = Const (18)
axd  oxt|,., EI

If we make the reasonable assumption that Y(x, ) is of the
form Y(x, t)=F(x)G(¢), then Eq. (18) leads to

3F aZF]

axd  ax?l,.,

G(t) [r

= const (19)

Equation (19) implies that G(¢) is a constant. Summing Eqgs.
(15) and (16) over i =1 10 i =4, we have

3?*Y 'Y

p—a-‘—2'+EIE=0 (20)
Py| _m 2y )
x|, EI o |, @b
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Because Y(x, t)=F(x)G(t), and G(¢) is a constant, Eqgs. (20)
and (21) imply

a.‘—Y =0 3y t 22
e 70 = cons (22)
3Y
— =0 23
a0 |, (23)

From Eqs. (22) and (23) it follows that (3’Y/dx?) =0, which
implies that (3°Y/dx?) is a constant. Additionally, the value
of this constant can be shown to be zero from the boundary
condition in Eq. (7). Proceeding in the same way and using
the boundary conditions in Eq. (6), it is trivial to show that
(3Y/3x)= Y(x, t)=0. This implies from Eqs. (18) and (17)
that # =0 and 6 =0,. Clearly, the maximum invariant set
for the system comprises the set of points where 6=,
#=0, and £}_, y,(x, 1) =0. If there exist functions y;(x, 1) #0,
=1, 2, 3, 4 such that Y=CS}_,y,=0 holds, then the set
S={Z:VYYZ)=0, ¥vj=1, 2,...,] contains entries other
than the trivial solution Z = Zy.ireq- 10 such a situation we
cannot claim global asymptotic stability of the equilibrium
point. Such a situation may arise in the case of symmetric
deformation in opposition, shown in Fig. 2, where y\(x, t)
= —w(x, t) and y;(x, t)= — ¥,(x, ¢). In such a situation, the
residual energy of the system remains trapped within the
beams. There exists no net interacting moment between the
hub and the beams, and the hub remains motionless at its
desired configuration §=6,.

The case of antisymmetric deformation in unison, shown in
Fig. 2, was considered in Ref. 4. In this case, it is assumed that
»(x, 0 =y (x, 1) =yix, ) =ys(x, 7). When Y(x,0)=0, this
implies that y,(x, t}=0 for i =1, 2, 3, 4. Therefore, for anti-
symmetric deformation in unison, it is quite simple to show
that the set S={Z: VU (Z)=0, ¥vj=1,2,...,0} contains
only the equilibrium point Z = Z ... Consequently, we can
establish the asymptotic stability property of the hub with the
flexible appendages undergoing antisymmetric deformation in
unison under the input defined by Eq. (11). The control law
given in Eq. (11) was used to stabilize the system to the equi-
librium point in Ref. 4, but no formal proof for the asymptotic
stability was provided.

Conclusion

The rest-to-rest maneuver of the distributed parameter sys-
tem consisting of a rigid hub with four cantilevered flexible
appendages was studied. The best choice of the control input
resulted in the negative semidefiniteness of the derivative of
the Lyapunov function. An invariant set analysis of the system
was subsequently carried out using an asymptotic stability the-
orem.! The analysis establishes the fact that the hub-ap-
pendage system is globally asymptotically stable when the sys-
tem undergoes antisymmetric motion with deformation in
unison.
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NEAR-MINIMUM-TIME THREE-DIMENSIONAL MANEUVERS
OF RIGID AND FLEXIBLE SPACECRAFT

Mark J. Bell! and John L. Junkins?

An approach is presented to accomplish large angle, nonlinear, three dimensional
attitude maneuvers in either near-minimum-time or near-minimum-fuel. The
method permits the specification of a torque shaped reference maneuver of the
near-minimum-time (bang-bang) or near-minimum-fuel (bang-off-bang) type; the
instantaneous switches are replaced by controllably sharp spline switches to reduce
excitation of flexible degrees of freedom. A Lyapunov method is used to design
tracking-type control perturbations to suppress errors due to disturbances and
‘model errors. The method is illustrated by numerical simulations and some
experimental results using the ASTREX test article.

INTRODUCTION

Primarily -due to mass considerations, future spacecraft will most likely have
large flexible appendages and exhibit significant coupling between overall rigid
body motion and vibratory motion. Many of these spacecraft will be required
to perform a variety of maneuvers in three-dimensions in near-minimum-time, or
near-minimum-fuel, with limited computational abilities, while suppressing flexible
modes of vibration. -A torque-shaped reference maneuver design, augmented by a
Lyapunov stable tracing law can achieve these stated requirements with robustness
in the presence of uncertainty. ‘ :

The main goal of this paper is to demonstrate one effective approach to control
a flexible spacecraft in near-minimum-time in three dimensions -while actively
and passively suppressing flexible modes of vibration. Secondarily, an analogous.
development for the the near-minimum-fuel case are presented. Feasibility of
this approach is discussed based upon analysis, computer simulation using both
a rigid-body and a flexible-body simulator, and through results from laboratory
experimentation. The experimental portion of this research was performed on the
Advanced Space Structure Technology Research Experiment (ASTREX) test article

1 Student Member ATAA, Graduate Research Assistant
2 George J. Eppwright Professor, Fellow AAS, Fellow ATAA
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located in the Phillips Laboratory, Edwards Air Force Base, California. This study
was undertaken as a part of the NASA/DOD Guest Investigator program.

The basic concepts underlying modern spacecraft dynamics and control have
been treated by many authors, including Junkins and Turner.! Single-axis control
of flexible spacecraft has been studied?—% and the optimal control problem in three-
dimensions has been addressed by Vadali, Singh, and Carter.”® Near-minimum-
time control of dynamic systems, which include single-axis maneuvers of flexible
spacecraft and flexible manipulators, have also been studied.®—1? The purpose of
this paper is to present a general three-dimensional approach, leading to maneuver
laws for the ASTREX structure. General model information, as well as a rigid body
model and a flexible body model for the ASTREX test article, are available.13:2:14
A near-minimum-time approach is formulated to control the ASTREX orientation
while vibration is attenuated using input smoothing!!. Additionally, effects of model
errors and disturbances are compensated using an asymptotically stable feedback
controller based on the work by Junkins et alll, Wie et al®, Vadalil®, and Junkins
and Kim!7.

EQUATIONS OF MOTION

The rigid body dynamics are modeled using Euler’s equations for a rigid body.
The matrix [I] is the inertia matrix, w is the angular velocity vector, [] is the matrix
representation of the standard cross-product, and [B] is the control influence matrix,
each of which has dimension 3 X 3.

[T + [@][fw = [Blv (1)

The control input to this equation consists of a reference control, u,..¢, and a
tracking control or terminal control, §u, as shown below.

U= YUpes + bu (2)

The kinematic equations used in the spacecraft model, equations (3) and (4),
are the set of 1-2-3 Euler angles which were used to determine the body’s position
in space relative to a fixed coordinate system.

. 1 003(93) —Sz'n(03) 0
{Q_} = Coslta) Cos(82)Sin(63) Cos(62)Cos(83) 0 {w} )
05\%2 55in(02)cos(03) Sin(6)Sin(83) Cos(62)

Cos(62)Cos(;3) Sin(f3) 0

(u} = | ~Cos)siniés) Coslts) 0 {i}=co1{g} @

These equations are used to orient the rigid body relative to a fixed inertial
frame.
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THE CONTROL LAWS
Near-Minimum-Time Maneuvers

The simplest minimum-time maneuver for a near-rigid vehicle undergoing a
single-axis maneuver is a single switch “bang-bang” control law. However, the
sharp switching will excite some flexible modes of vibration. The near-minimum-
time maneuver proposed rounds off the sharp switches by replacing the sharp
discontinuities with a controllably sharp cubic polynomial and introducing a shaping
parameter a : 0 < a < 0.25, where at a = 0, the torque profile is a square wave and
at a = 0.25, the torque profile is a smooth sine-shaped profile satisfying zero initial
and final slope conditions. It should be noted that as o increases, the maneuver
time (ts) increases, and the vibrational energy is expected to decrease due to the
greatly increased rolloff in the spectral content of the control input. The cubic

polynomial, defined as the shaping function f(¢, ¢ 5) is defined!! as follows.

( (Kt;)z [3—2(3‘7)] for 0 <t < At = oty
for At<t<ts/2-At=1

f(t,a,tf)=ﬁ 1-2(58)" 3-2(5)] forti<t<tp/2+At=t, (11)

1 forts <t <tfg— At =13
| -1+ (558)" [3-2(45%)] forts <t <ty

The basic idea underlying this torque-shapi'ng' approach is to establish a smooth
rigid body reference maneuver, 8., f(t), then calculate the corresponding open loop
control law by inverse dynamics. This reference torque, when applied to the body,
will make 8(t) approximate 8,..¢(t). The Lyapunov tracking law, which is discussed
in the next section, seeks to cause 8(t) to track 0, ¢(t) in the presence of disturbances

and other non-ideal effects while also suppressing structural vibrations. As will be
evident, it is possible to develop the tracking law to guarantee asymptotic stability
in the absence of model errors. The development of the open loop control law is -
shown below, beginning with the standard linear second order equation of motion

for a rigid body:
(6 =(Blu (6)
= [B] Zmaz f(t: o t5) (7)

This equation can be applied to the reference maneuver, manipulated, and then
integrated twice, yielding Oref, Oref, and 0,5 as shown.

Bros(t) = (17 [Bhas fhast) ®)
Broy (8) = 0, + (117 [B] naa / f(rants)dr (©)
Brp () = By + 6,2+ (1177 [Bltmae / / " f(nyats)dndr (10)

0
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However, the shaping function, f(t,a,tg), can be integrated twice, piecewise,
with the elegant generalization of the bang-bang (o = O)result:

v Tf( ty)dndr = -1-—la+—1—oz2 ts? (11)
0 0 n’a’f "l T= 4 2 10 f

Substituting this result into the previous equation and considering a rest-to-rest

maneuver (Q(to) = Q(tf) = 0) yields the following expression for § F— 0,

1 1 1
—[n-1 2 22
This equation can then be inverted to solve for the required maneuver time

on each axis, as a function of the maneuver angle change, shaping parameter, and
maximum torques as:

t_zf umazl -1
mazr 1
G | [R5
3

The total maneuver time, t¢, is then simply:

tf =mar (tfx tfztfs) (14)

The effect of increasing alpha on a normalized maneuver time and the resulting
profiles are shown below as Figure 1. As expected, the maneuver time increases as

« increases, as-illustrated in the figure.
A ]

alpha increasing

0 0.2 0.4 0.6 0.8 1 1.2 1.4

normalized time

Figure 1. - Bang-Bang Shaping Function vs. Normalized
Time for Increasing a.
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The total maneuver time, ts, can be substituted into the previous equation
and a vector of constants containing the maximum torques, which will be applied
on each axis, up, can be determined.

Bl 1] (8 - 8,) 1
e "

The values of up, ty, and a selected value of a, can then be inserted into
equations (8)-(10), yielding:

§,5(t) = (7 [Blug f(t. o ty) | (16)
b,0s (t) =, + (17 [Blug / F(ryouts)dr (17)
oy )= 0y Bt U Blug [ [ Srctpanar (9

Now, using the exact rigid body dynamics, we can solve for a control ureg(t)
which would cause the rigid body vehicle to execute the maneuver Ores(t). First,
the kinematic equations for the set of 1-2-3 Euler angles, shown in matrix form as
equation (4), can be used and then differentiated to determine w,.¢(t) and w(t).

L.L.)ref(t) = [C (Q.ref)] .Qref (19)

9’—("’) = % [C (Qref)] —a—ref + [C (Qref )] Qref (20)

The reference torque, %, f(t), can then be found by inverse dynamics, using

Euler’s equation.

t

-’l—l‘-ref(t) = [B]—l ([I] Qref + [ﬁf‘ef] [I] "—'J—ref) (21)

Hence, the near-minimum-time torque-shaped maneuver has been extended to

the three dimensional case. :
Motivated by the need to consider a wider class of reference maneuvers, such as

near-minimum-fuel, it was noted that any function which is twice integrable may in
principle be used as the shaping function. Seeking to establish a torque-shaped
family of near-minimum-fuel maneuvers, we consider the bang-off-bang control
parameterization shown below as equation (22), where t3 denotes the time at the
end of the first pulse, B corresponds to the coast time, and a parameterizes the
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sharpness of the of the control on/off profile.

(&) [3-2(&)] for 0 < t < t; = a2ats
1 for iy StStz = (1—2a)i3
. 1- (52)° [3-2(58)] forta<t<ti=ts
g(t,a,B,t3) = ﬁ 0 \ fort3 <t<ty=t3+0 (22)
—(L-A-—tt“') [3—2(-‘-2—?)] fOl‘t4StSt5Et1+t3+ﬂ
-1 forts <t<tg=ty+ts+p
|1+ (5t8)? [3-2(t5le)] forts <t<tr=2t3+0

Following the same procedure yields an alternative torque shaped control law.
Figure 2 shows the effect of increasing alpha from 0 to 0.25 on the normalized
maneuver time while holding 8 constant at 1. This figure shows that the maneuver
time increases as the control profile becomes smoother.

1 - ]
% oL oo = g . - ]
' 1 ; 0=0.25
Alpha Increasing | : O‘TO ; x
S ) e e
0 02 04 06 038 1 1.2 14

normalized time

Figure 2. - Bang-Off-Bang Shaping Function vs. Normalized
Time for Increasing a.

The effect of decreasing beta, while maintaining a constant value for a of 0.25
on the maneuver time, is shown in Figure 3. Again, the maneuver time increases
as the coast time is increased, as seen in the figure.
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normalized time

Figure 3. - Bang-Off-Bang Shaping Function vs. Normalized
Time for Decreasing f.

Two open-loop control laws have been developed in this section; computational
and laboratory experimental results are discussed below. These open-loop control
laws are established for a general rigid body that moves in three-dimensional space,
although it is recognized that these reference maneuvers may be significantly sub-
optimal for the case when the gyroscopic coupling effects are large Application
of this torque-shaping scheme to any rigid body requires a priori knowledge of the
inertia matrix and the control influence matrix, both of which are required to be
invertible. As is evident in the robustness studies, however, including a well designed
tracking law to compensate for la.rger-than—expected errors.

The open-loop control laws presented in this section are exact solutlons based
on an inverse dynamics approach. Although the control laws are expected to
perform well, a closed-loop feedback control law will almost always be needed
to compensate for approximation errors as well as disturbances and identification
€rrors.

A Lyapunov Tracking Controller

The tracking controller is a Lyapunov tracking controller which uses a different
parameterization of the positional error energy term.-The Euler parameters, ¢, are

used to relate the actual frame to the reference frame of the body; note ¢ is often
known as the “error quaternion”. Hence, when these two frames coincide, the Euler
parameters will be identically { = [1 000]7. The Lyapunov function and its first
derivative is shown below.

2 = 8T [1] 6w + (T W)¢ (23)
V= 6wl 6w+ ¢ W)¢ (24)

Through manipulations to follow, the time derivative of V' in Equation (24) can
be re-arranged to form V = @ {fnct(du, {,w)}, and this structure can be exploited
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to determine a control law for du which guarantees V < 0. Calculating the Euler
parameters from the 1-2-3 set of Euler angles of the actual frame and the reference
frame is a straightforward process. The orthonormal rotation matrix from the
inertially fixed frame to the actual frame is shown below. It should be noted that
s; and ¢; stand for sin(f;) and cos(6;), respectively.

_CgC3  S3C1 + 35281 5183 — €382
[T(8)) = | —cass cac1 — 838281 $1C63 — §352C1 (25)
S2 —C281 (151

Additionally, the rotation from the fixed frame to the reference frame is
identical in format with the exception that S; and C; stand for sin(fyref;) and
cos(0yres, ), respectively. The rotation matrix between these two frames can be found
easily using linear algebra, noting the fact that the inverse of an orthonormal matrix
is its transpose. The rotation from the fixed frame, whose orthogonal unit vectors

are denoted by fi, to the body reference frame, ﬁre > and to the actual frame, b, are
shown below.

b=[T@)2 | (26)
Eref = [T(Qref)] -lii . (27)

The second of these equations can then be inverted yielding an expression for
projecting the fixed frame unit vectors onto the reference frame.

f”— = [T(Qref)]T :Izref (28)

This equation can then be substituted into equation (26), yielding the desired
relationship between the actual frame and the reference frame.

-IE = [T(Q)] [T(Qref)]T -B—ref . (29)
The error rotation matrix between the two frames is then defined as [R].
[R] = [T(@)] [T(@rep))” i - (30)

We note that [R] is typically a near-identity matrix because it represents the

tracking error angular displacement of b from b, - Once [R] has been computed,
the set of Euler parameters between these two frames can be computed as follows:

trace(R) = Ry + Rz2 + R _ (31)

Co = \/&(1 + trace(R))| (32)
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¢y = ——(Ras — Rs2) (33
1= g, Ui 32 )
(2= j}c;(Rsl — Ry3) (34)
(= 4—1<a(R12 — Ro1) (35)

This set of Euler parameters is governed by the following matrix differential
equation:

“CCI —gz —(Cs

s G G Qg

(= G G -G 6 (36)
- G G
{=16(0) 8w (37)

Taking the transpose of this equation yields:
T T T
¢ =68u"[G(Q)] (38)

By utilizing this result and Euler’s equation (1) to eliminate [I]6w, equation
(24), the derivative of the Lyapunov function can be arranged in the desired form.
This will permit construction of a stabilizing feedback control law.

V = 6w (~ @) + [Bref) ]y + [Blou + [G(O]T W]{) (39)
= —6wT [K]bw (40)

The second step, Equation (40), is motivated by the desire that du be chosen

such that V < 0. Equating the right hand sides of the previous two equations yields
an intermediate algebraic equation:

—[K)6w = —[@11e + Bres]llwres + [Blow + [GIO) [W]¢ (41)

Solving for the feedback control §u from equation (41) yields the asymptotically
stable feedback control law:

su = [B]™ (~[K]6w + [@)1lw — @reslfleres — [COI WE) (42)

This perturbation is superimposed on the reference control in the sense u(t) =
Upef(t) + 6u(t). The gains [K] and [W] were selected subject to the eigenvalue
placement constraint that they produce critical damping on the linearized second
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order linear model for rigid body motion. In addition, a scaled inertia matrix was
used as the gain matrix [K], since this provides a one-parameter family of symmetric
and positive-definite gain matrices. It should be noted that the matrix [W], as shown
below, is not positive-definite. However, if the last three terms in the relative Euler
parameter set ¢ are zero, then perfect tracking is accomplished (i.e. the set of Euler

parameters is redundant). Hence, the fact that [W] is semi-positive definite is not a
problem due to the redundancy of the Euler parameters. The gains used throughout
this paper are shown below. More generally, the gain matrices would be subject to
optimization over the set of stable gains to extremize a performance measure, along

the lines of Junkins and Bang'®.

(K] =c1[I}; ¢1 =2.5298 and [W]=c; [g ‘([lIT]‘] ; c2 =16

EXPERIMENTAL RESULTS
Bang-Bang Experimental Results

The Advanced Space Structure Technology Research Experiment (ASTREX)
test article is a large experimental structure that resembles a .spaced-based laser
beam expander as shown in Figure 4. The 5000 kilogram structure is mounted on a
spherical air bearing and is maneuvered using a specified set of cold gas thrusters.
A set of six 8-pound thrusters or a set of four 200-pound thrusters plus two 8-pound
thrusters are available for controlling the structure. For each set, two thrusters fire
in unison to produce torque. Hence, three sets of two thrusters firing in unison are
needed to control the test article in three dimensions. All thrusters are powered:
by compressed air which is stored in two pressurized tanks. These pressure tanks
have a limited supply of compressed gas which results in a fuel constraint. To avoid

difficulties with the fuel constraint, only the bang-off-bang control law is used in

conjunction with the 200-pound thruster set.

The first set of experimental results was tested using the set of 8-pound
thrusters operating at a maximum thrust of 3 pounds in conjunction with the
open-loop bang-bang control profile. The inertia matrix and the control influence -
matrix for the structure were given in reference 14 and were found by using a
system identification technique. Due to the fuel constraint and to a nonlinear valve
problem associated with low tank pressure, the maximum thrust from each thruster
was limited to three pounds . The open-loop reference profile used on the first test
is a fifty-degree yaw maneuver.
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Figure 5 - Bang-Bang Open-Loop Experimental Angle Profile
on the ASTREX Test Article

During experimentation, the thruster commands were given in volts, which were
measured and stored as input, and a pressure feedback on each individual thruster
was used to determine the output force at each thruster. Additionally, three gimbal
. angles and tank pressure were also sensed.and stored as output. Figure 5 shows
the gimbal angles in the body frame with respect to time in the form of three strip
plots.

This figure shows that the test article moved approximately forty-two degrees
in the yaw direction. This is eight degrees short of the specified maneuver. The -
rotation in the roll direction is oscillatory, but small. This small discrepancy could
have been caused by any unmodeled, unsymmetric mass in the model or by a
thruster pair generating slightly different forces, or due to unmodeled suspension
system dynamics. The pitch angle encoder appears to have a sensor or grey code
problem which causes the noisy output signal. However, the actual and measured
motion in -the pitch direction are small. It should be noted that these tests
were performed open-loop and thus no on-line feedback corrections were made to
compensate for modeling or hardware errors. It is anticipated that the closed-loop
control capability for the ASTREX structure will exist in the calendar year 1994

time frame.
The motion in the yaw direction is approximately 16% short of the specified 50

degree maneuver; this could have been caused by a number of factors. If the inertia
used in the design model was smaller than the actual inertia of the structure, a
smaller angle change would be expected. The hardware cables are suspended from
the structure; this produces cable drag, a rotational spring-like force in the yaw
direction, as the cables are pulled away from their equilibrium position. A cable-
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follower mechanism attempts to compensate for this problem; while the magnitude
of the cable-follower induced disturbances are reduced, the cable-follower dynamics
adds additional complexity in modeling the disturbances acting on the structure.
This uncompensated cable drag phenomena would also produce smaller motion in
the yaw direction in addition to a small angular velocity which would remain about
the yaw axis as the structure returned to its equilibrium position. A final cause of
the under-rotation problem is known to be due to low tank pressure near the end
of the maneuver. Figure 6 shows the thrust commanded to each individual thruster
in volts, this graph is identical to the output from the control law design except for
the conversion of thrust to volts.
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. | | ___—
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8 Ib thrusters commands{voits)

Figure 6 - Bang-Bang Open-Loop Experimental 8 Lb. Commanded
- Thruster Profile on the ASTREX Test Article

Figure 7 shows the output thrust at the nozzle of each thruster. The
degradation of the thrust on the first two sets of thrusters can be seen beginning
around 18 seconds, where the output profile becomes piecewise linear and decreases
in comparison with the smooth commanded thrust. Although the degradation is
not severe, it is definitely present. At low pressures, the solenoid valves behave in
a poorly-modeled nonlinear fashion, especially evident when the valves are being
closed. Notice the lack of left-right symmetry on all six final “braking” pulses of
Figure 7.
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Figure 7 - Bang-Bang Open-Loop Experimental 8 Lb. Actual
Thruster Profile on the ASTREX Test Article
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Figure 8 - Bang-Bang Open-Loop Experimental Tank
Pressure Profile on the ASTREX Test Article

Figure 8 shows the tank pressure profile in pounds per square inch. It is noted
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that thrust deterioration for the 8-pound thrusters occurs as the tank pressure falls
below 150 psi at 18 seconds. Notice, comparing Figures 7 and 8, that the relatively
most significant thruster anomalics occurred at tank pressures well below 150 psi

(i.e. the final 15 seconds of the maneuver).

Bang-Off-Bang Experimental Results

The second set of experimental results was performed using the bang-off-bang
open-loop control law in conjunction with the set of four 200-pound thrusters and
two 8-pound thrusters. The specified maneuver was a 150 degree yaw maneuver,
with the 8-pound thrusters limited to three pounds each and the 200-pound
thrusters limited to 50 pounds each for fuel and safety reasons. Figure 9 shows
the gimbal angles verses time for the second set of experimental results.
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Figure 9 - Bang-Off-Bang Open-Loop Experimental Angle Profile
on the ASTREX Test Article

This figure shows that a yaw angular rotation of only 32 degrees was accom-
plished from a required 50 degrees. The yaw angular velocity at the end of the
maneuver was in the direction opposite of the maneuver; this appears to be the
result of cable drag. The roll angle was again oscillatory but small and the pitch

sensor exhibits the same noise characteristics.
Figure 10 shows the commanded voltage to the set of 200-pound thrusters.

Each 200-pound thruster consists of two components which fire in opposite direc-
tions and are measured and controlled separately.
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The output pressure measured at the nozzle of the 200-pound thrusters is shown
as Figure 11. This figure illustrates how the two components of each thruster work
in unison to produce the positive and negative components of the input signal.
Although the reproduction of the input signal does not deteriorate near the end of
the maneuver, some anomalous pressure leakage is evident.

Figure 12 shows the commanded voltage levels to the 8-pound thruster set
which is used in conjunction with the 200-pound thrusters to provide controllability.
This figure shows that the first two sets of 8-pound thrusters are zero since they
have been replaced by the 200-pound thrusters. The third set of 8-pound thruster
commands are shown as the two lower plots.
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Figure 12 - Bang-Off-Bang Open-Loop Experimental 8 Lb. Commanded
Thruster Profile on the ASTREX Test Article '

The pressure sensor at the nozzle of the 8-pound thrusters is shown as figure
13. The first two sets of readings show that these thrusters are firing although they
have been commanded to be off. This phenomena may be the result of electrical
feedback within the hardware. Again, the third set of 8-pound thrusters have output
deterioration near the end of the maneuver beginning at 10 seconds.

The final experimental figure (Figure 14) shows the tank pressure verses time.
It is noted that at 10 seconds, where the 8-pound thruster degradation begins, the
‘tank pressure has fallen below 150 psi. Figure 14 shows the tank pressure verses
time for the bang-off-bang control law. It should be noted that during the coast
period, the rate of pressure loss is approximately zero. This is the characteristic
of the bang-off-bang control law which, of course, that saves fuel. The fact that
there is a measurable negative slope, however, indicates that significant leakage is

109




17

occurring somewhere in the complicated plumbing system.
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CONCLUSIONS

A torque-shaped maneuver approach for a spacecraft in three-dimensions has
been developed and demonstrated to work extremely well using open-loop and
closed-loop simulations for the bang-bang and the bang-off-bang maneuvers. In
each case tested, the open-loop tracking error was essentially zero; the only errors
introduced in the simulation were due to integration and interpolation errors. The
closed-loop Lyapunov tracking control law drove large initial tracking errors to
essentially zero within a few seconds and kept errors negligible until the final time
using simulations where only initial condition errors were introduced. Additionally,
only modest degradation of this performance resulted when significant model
errors were introduced into the simulation, the Lyapunov tracking control law
compensated for the model errors and initial condition errors, and again regulated
the tracking error to essentially zero by the final time. Hence, the Lyapunov tracking
controllers were shown to be robust with respect to modeling errors and initial
condition errors.

The experimental portion of this research showed some positive results, how-
ever, also revealed are several hardware problems likely to be resolved with fu-
ture evolution of this experimental facility. The experimental open-loop maneuvers
showed the same general trends as the simulated data although they differed in mag-
nitude. This discrepancy appears to have been caused by an underestimation of the

mass of the structure and some unmodeled effects due to solenoid valve nonlinear-
ities. Secondary problems are apparent in modeling the gimbal and cable-follower

~dynamics. Simulated maneuvers using an increase in mass of 10% on the open and
closed-loop simulations were performed. The experimental data exhibits similar
open-loop characteristics to the simulated data with a mass error. This problem
- was easily compensated for in simulation by closing the control loop. Closed-loop ex-
perimental results are not yet available due to current system hardware limitations,
_ mainly, the angular rate measurements.- Also, a significant number of unexplained
anomalies were encountered in the experimental results; however, these may be
considered typical of the early experimental “shakedown” of such a complicated
electromechanical system.
The ASTREX test results also revealed some actuator problems generating

the commanded thrust profiles using the 8-pound thrusters near the end of the -

maneuver when the tank pressure dropped below 150 psi. This problem stems
from the fact that the cold gas thrusters’ solenoid valves were designed assuming a
constant back pressure of 500 psi. Our results suggest that the design specification
of 500 psi is quite conservative; the thrusters operate reliably down to 175 psi
using low thrust commands. With the present pressurized gas supply system, very
low tank pressures (j 150 psi) routinely occurred because the tanks can only be
pressurized between maneuvers. The thrust generation problem could be handled
by performing maneuvers that only require only a very small amount of fuel and
thus maintain a tank pressure above 150 psi, however, these small angle maneuver
are less interesting and remove many of the nonlinear issues of intent from the
system dynamics. Another problem was the support system in the yaw direction
which was caused by to the natural equilibrium position of the structure and a
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disturbance torque due to cable drag and cable-follower dynamics. These two
phenomena could also cause the open-loop experimental maneuver to fall short of
the required final yaw angle as well as causing the yaw angle to drift back towards
its starting orientation upon completion of the open-loop torque profile. Each of
these problems can be handled with rigorous modeling before deriving the open-
loop control law or by using feedback compensation with appropriate sensing system

enhancements.
The goal of this paper, to extend the near-minimum-time maneuver design

technique to three-dimensions, was accomplished. The simulated results, both open-
loop and closed-loop, were excellent and the preliminary experimental tests showed
promising results.
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Abstract

A new family of orientation parameters derived from the Euler parameters is presented. They
are found by a general stereographic projection of the Euler parameter constraint surface, a four-
dimensional unit sphere, onto a three-dimensional hyperplane. The resulting set of three
stereographic parameters have a low degree polynomial non-linearity in the corresponding
kinematic equations and direction cosine matrix parameterization. The stereographic parameters
are not unique, but have a set of “shadow” parameters. These “shadow” parameters are generally
numerically different, yet represent the same physical orientation. Using the original
stereographic parameters combined with their shadow set it is possible to establish a set of three
parameters which can describe any rotation without a singularity, yet with one discontinuity. The
symmetric stereographic parameters are ideal to describe departure motions, since they can be
chosen such that they are nonsingular for up to a principal rotation of £360°. The asymmetric
stereographic parameters are well suited for describing the kinematics of spinning bodies, since
they only go singular when oriented at a specific angle about 2 specific axis. A globally regular
and stable control law using symmetric stereographic parameters is presented which can bring a
spinning body to rest in any desired orientation without backtracking the motion.

Introduction

While the Fuler parameters (quaternions) describe an arbitrary orientation without a
singularity, they form a once-redundant set. The following development studies a method to
stereographically project the Euler parameters onto a three-dimensional hyperplane and form a

family of sets of three parameters called the stereographic parameters. This study is motivated by
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earlier work done by Marandi and Modi [1], Tsiotras [2] and Shuster [3]. In particular, Marandi
and Modi introduce a set of three parameters similar to the Rodrigues parameters (singular at a
principal rotation of @ = +180°), which move the singularity out to a principal rotation @ of
4360°! Marandi, Modi and Tsiotras describe this modified set of Rodrigues parameters as the
result of a stereographic projection of a four-dimensional unit sphere onto a three-dimensional
hyperplane. This paper will explore the stereographic projection idea further and in a more
generalized way, and show that both the classical Rodrigues parameters and the Modi/Tsiotras
modified Rodrigues parameters can be considered a special case of the general symmetric
stereographic parameters. Indeed, the method presented can be used to construct a set of three
symmetric stereographic parameters which have their singular point anywhere between a
principal rotation of 0° and 360°, or to construct a set of three asymmetric stercographic
parameters which have their singular point determined by both a principal angle and an axis of
rotation. Analogous to the Euler parameters, the stereographic parameters are generally not
unique. The Euler parameters time variation, for any physical motion, generate a trajectory on the
surface of the unit sphere constraint surface. The reflection of the Euler parameters (reversing all
parameters signs) generates a second trajectory on the opposite of the sphere which corresponds
to the same physical rotation. Each set of stereographic parameters has a set of “shadow
parameters” which correspond to the reflection set of Euler parameters. These “shadow™
stereographic parameters are gcﬁcrally numerically different from the original parameters, yet
physically parameterize the same rotation. The developments presented herein are of significant
academic importance; using stereographic projections it is easy to visualize the singularities of
this infinite family of three parameter sets which include the classical and modified Rodrigues

parameters.

The modified Rodrigues parameters, as introduced by Marandi and Modi, are studied in
further detail, since they present the largest range of non-singular rotations for the symmetric
stereographic parameters. In combination with the corresponding set of “shadow parameters”, a

globally regular and non-singular Lyapunov attitude control is established in feedback form.

The Euler Parameter Unit Sphere

The four Euler parameters are well known and well studied in the literature. They can be

developed directly from Euler’s principal rotation theorem [3,4]. The angle @ is the principal
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rotation angle and the unit vector ¢ is the principal line of rotation.
o K )
By = cos > B, = ¢-sin i=123 ¢))
BB = By+Bi+Po+B3 =1 ()

The four Euler parameters f; abide by the holonomic constraint given in equation (2). This
equation describes a four-dimensional unit sphere. The Euler parameter trajectories on this sphere

completely describe any possible rotational motion without any singularities or discontinuities.

.Note that the Euler parameters are not unique. The mirror image trajectory -B(r) describes
the identical rotational motion as B(¢). The negative sign means the rotation is accomplished
about a principal axis of the opposite direction through the negative principal angle. Usually this
non-uniqueness does not pose any difficulties since both sets have identical properties, correspond
to the same physical orientation, and can be solved uniquely once initial conditions are

prescribed.

Because the Euler parameters satisfy one holonomic constraint, they form a once redundant
set of equations. Three parameters are sufficient to describe a genefal rotation. However, the
problem with any set of three parameters is that, as is well known, singularities will occur at
certain orientations. Different three-parameter sets distinguish themselves by having different
geometric interpretations and, especially, having their singular behavior at different orientations.
Also of significance, most three-parameter sets introduce transcendental nonlinearities into the
parameterization of the direction cosine matrix and related kinematical relationships. However,
the classical Rodrigues parameters and other sets discussed herein involve low degree polynomial
nonlinearities in both the direction cosine matrix and associated kinematical differential equation,
without approximation. The Euler parameter description represents an attractive regularization

which has no singularity, at the cost of having one extra variable.
Stereographic Projection of the 4D unit Sphere

If a minimum parameter representation is desired, the four Euler parameters can be reduced to -

any parameter set of three by an appropriate transformation. For example, the 3-1-3 Euler angles
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or the Rodrigues parameters are very commonly used sets that are easily transformed from the
Euler parameters [3,4]. Marandi, Modi and Tsiotras found a set of modified Rodrigues parameters
by means of a stereographic projection of the four-dimensional unit sphere onto a three-

dimensional hyperplane. To describe the stereographic projection, imagine a three-dimensional
| sphere being projected onto a two-dimensional plane (analogous to the Earth map projection
problem). A certain point is chosen in the 3D space called a projection point. Next a 2D mapping
plane is chosen. Every point on the unit sphere is then projected onto the mapping plane by

drawing a line from the projection point through the point on the unit sphere and intersected with

the mapping plane.

A Bi
2 .
: /_ mapping
1 line
projection ~
point g ) BB
) N o .
," b ___ BO
/ po=a+1
‘/ zero
S~ rotation
. _an
unit / /"
circle \—/
< 1 >

Fig. 1. Illustration of a Symmetric Stereographic Projection onto Hyperplane
Orthogonal to By axis.

Figure 1 shows only a 2D to 1D stereographic projection to keep the illustration simple. The
results though can easily be expanded to a four-dimensional sphere since the axes are orthogonal
to each other. Figure 1 shows a 2D unit circle getting projected onto a mapping line. With all these
projections the Euler parameter B is eliminated, since the mapping hyperplane normal is the Bo
axis. They are called symmetric projections since the principal angle range is symmetric about the |

zero rotation angle. Asymmetric stereographic projections are projections onto a hyperplane with
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a normal other than the B axis, which do not have a symmetric principal angle range. The case

where the Euler parameter B, B, or B3 is eliminated is discussed later in this paper.

Placing the projection point on the B axis yields an even principal angle range about the zero
rotation point. The mapping line is placed a distance of +1 from the projection point. The
parameters are scaled by this arbitrary distance, so having a distance of 2 between the projection
point and the mapping plane would simply scale all the parameters by a factor of 2.

Keep in mind that the Euler parameters are defined in terms of half of the principal rotation
angle ®. The point (1,0) on the circle corresponds to a zero rotation. The point (0,1) corresponds
to a +180° rotation. Studying Fig. 1 it becomes evident that the reduced parameters go off to
infinity when a point on the circle is projected which lies directly in the plane perpendicular to the
B axis through the projection point. The two lines that need to be intersected are parallel to each
other, causing the intersection point to move to infinity. The corresponding principal rotation
obviously yields the angle at which the reduced set of parameters will go singular! By placing the
projection point at different locations on the Py axis, the maximum principal rotation angle is
varied. If the projection point is outside the unit circle, no singularity will occur, but the projection
is no longer one-to-one. Some areas of the mapping will start to overlap in the projection plane.
Clearly this is not a desirable feature because of the ambiguity this lack of uniqueness would

introduce (given the projected coordinates, we cannot uniquely orient the reference frame).

The angle @y is the principal angle of rotation where the stereographic parameter vector {

encounters a singularity. This angle ®g determines the placement of the p}ojﬁction point a.

a=cos— &)

The transformation from the Euler parameters to a general set of three symmetric

stereographic parameters { is defined as:

B;

- -t @

&

The condition for a symmetric stereographic parameter singularity, evident in equation (4), is

shown below.
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a=8,= cosgz)- » o)

If a < 1 this condition is satisfied at an infinite set of orientations. If the projection point is on
the unit sphere surface, thena=-1and a singularity is only achieved at ® = £360°.

_ 7L+ 1+ 07C(1-a)

0 1+07C ©
-a+.’1+§’§(1—a’)
B,’ = C,- ) -c;-c i=123
+

The inverse transformation from the general stereographic parameters { to the Euler
parameters B, is given in equation (6). This equation holds for both the symmetric and asymmetric

stereographic projections.

Since the Euler parameters are not unique, it is valid to rewrite equation (4) in terms of -B,.
For the general case these new stereographic parameters Ss correspond to the mirror image of the
Euler parameters and are generally not numerically equal to { of equation (4). However, the
resulting vector gs will describe the same orientation as the original parameters and are herein

referred to as the “shadow points™ of { and are denoted with a superscript S:

_ﬁi' . B;

- =
G = ~-Bo—a - Bo+a

)

Using equation (6) the shadow point Ss can be exprcésed directly as a transformation of the

original parameters { and the projection point a as:

CS—Q{ _a+ 1+ 0C(-d) ]

@
a+2al L+ Jirea-ad

The fact that the shadow point vector _Cs generally has a differeht behavior than the original {
will be useful when describing a rotation. The family of stereographic parameters generally has -

two distinct sets of parameters, corresponding to (1) and -B (1), which describe the identical
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rotation and are related to one another by equation (8).
The differential kinematic equations for { are found by differentiating equation (4).
. B BB
L . ©)
ﬁo —a (Bo - a)
By making use of the differential kinematic equations of the Euler parameters [4] given as:
B:J Bo —Bl —Bz -ﬁ3 0
Bl - -l- Bl Bo -33 Bz O (10)
ﬁz 2 ﬁz Bg Bo -Bl 0)2
LB3 B3 -ﬁz Bl Bo 0)3

and the basic definition of the stereographic parameters given in equation (4), the differential
kinematic equations for the stereographic parameters can be found. Their general form is very
lengthy and not shown here due to space limitations. The most important special cases are
discussed below.

Viewing Fig. 1, it becomes evident that a set of three symmetric stereographic parameters
cannot have the singularity point moved beyond a principal rotation of +360°. Going beyond
+360° would mean finding a projection point that would map the entire unit sphere more than
once, i.e. not a one-to-one map onto the projection plane. Therefore the symmetric parameters are
better suited for regulator or “moderately large” departure motion problems, than for spinning

H

body or large angle maneuver cases.

Note that for the zero principal rotation, the asymmetric stereographic parameters are not
equal to zero. The projection of the By parameter onto B; = a + 1 is not zero because By is one at

the zero principal rotation.

Asymmetric stereographic parameters have a qualitatively different singular behavior from
the symmetric stereographic parameters. The Euler parameter Bg contains information about the
principal rotation angle only (i.e., the direction of ¢ does not affect Bg). Eliminating B during a .

symmetric projection causes the singularity to appear at a certain principal rotation angle,




independent from the principal axis of rotation ¢. Since for the symmetric projections, the zero
rotation point (1,0,0,0) lies on the B axis and the singularity occurs at g, we have a symmetric
range of nonsingular principal rotations {-@g < ® < +Pg} about the zero rotation, regardless of

the direction of ¢.

BoB mapping

bi=a+1

unit /

circle projection
' point

Fig. 2. Tlustration of a Asymmetric Stereographic Projection onto Hyperplane
Orthogonal to f3; axis.

For an asymmetric projection, one of the Euler parameters B;, B, or B3 is eliminated. Each
one of these parameters contains information about both the principal rotation angle and the
direction of e. Therefore singularities will only occur at certain angles about the i-th axis
(corresponding to ;). Figure 2 illustrates an asymmetric stereographic projection where B; is
eliminated. All possible projections points a now lie on the B; axis, and the mapping hyperplane
perpendicular to B; is defined at f; = a+1. Since the zero rotation is no longer in the center of the
nonsingular principal angle range, the valid range of principal angles is non-symmetric. A
singularity will occur at ®g; or ®g;, where these two principal angles are unequal in magnitude.
Given a singular principal rotation angle ®g; which lies between +180°, the corresponding

projection point a is defined as:
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a = cos— 11)

The second singular principal rotation angle ®gj is then found as:
@, = 28— Qg (12)

The transformation from Euler parameters to the corresponding asymmetric stereographic
parameters is the same as given in equation (4), with Bg and B; switched. A singularity now occurs
when B; equals a. If the projection point a lies inside the four-dnmensxonal unit sphere, this may

occur at several orientations.

;- sin% =a (13)

Using equation (1), the condition for a singularity becomes equation (13), where the index i
stands for the B; parameter which was eliminated. Since the sine function is bounded between %1,
a singularity will never occur if |e] <a. If the projection point a is moved to the sphere surface,
namely to 1, then a singularity may occur with a rotation about the i-th body axis only! The
reason for this is evident in equation (12). Since a is +1 and the sine function is bounded within
+1, the only way equation (13) is satisfied is if |e.| = 1. Because ¢ is a unit vector, the other two
direction components must be zero if |e¢] = 1. “Thus if the body is spinning about an axis other
than the i-th body axis, a singularity will never occur. Therefore these asymmetric stereographic
parameters are attractive for spinning body problems, where an object is rotating mainly about a
certain axis. The principal rotation angle is now not bounded as with the symmetric stereographic
parameters, but can grow beyond £360°. Simply choose the normal of the projection hyperplane
to be far removed from the rotation axis and place the projection point a on the four-dimensional

unit sphere surface and the probablhty of encountering a singularity is virtually nil.

For both the symmetric and asymmetric stereographic parameters, having the projection pomt
on the sphere surface means the singularity can only occur at two distinct orentations. If the

projection point lies inside the sphere, there generally exists an infinite set of possible singular .

orientations.
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The inverse transformation from asymmetric stereographic parameters to Euler parameters is
the same as given in equation (6). These asymmetric parameters also exhibit the same shadow
point behavior as the symmetric parameters do with the same transformation given in equation
(8). Therefore, if a singular orientation is approached with the asymmetric stereographic

parameters, one can switch to the shadow point to avoid the singularity.
Classical Rodrigues Parameters

The Rodrigues parameters g have a singularity at ® = +180°. This corresponds to a point on
the two-dimensional unit circle in Fig. 1 of (0,£1). The corresponding symmetric stereographic
projection has the projection point a at the origin and the mapping line at B = 1. It becomes
evident why the classical Rodrigues parameters must go singular at ® = +180° when describing
them as a special case of the symmetric stereographic parameters. The transformation from the
Euler parameters to the Rodrigues parameters ¢ is found by setting ®g=+180° in equation (3-4).

The well known result is shown in equation (14) below.

G2 =123 s
Bo

The inverse transformation from the Rodrigues to the Euler parameters is found by using the

same Pgin equation (6) and is given as:

By = B, = —— i=123 (15)

The differential kinematic equation in terms of the classical Rodrigues parameters is given in

vector form as:

(16)

Lo}
]
N =
”~~
[
|
p—
et
vy
+
(Y
I
LY
S’

An explicit matrix form of equation (16) is given below [4].
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2
1+q] 99293 1193+ 92| |9,

1
5 = 2
§=3laa+a 149 0a-a||®2 an

[O)]
039192 13729 1+q5 |2
Using the definitions of the Euler parameters in equation (1), the Rodrigues parameters can

also be expressed directly in terms of the principal rotation angle @ and the principal line of

rotation e¢.

g = ety (18)

From equation (18), it is obvious why the classical Rodrigues parameters go singular at

+180°. For completeness the direction cosine matrix C is given in explicit matrix form [4]:

2 2 2
1+q7-93—4q; 2(‘1;‘12‘“]3) 2(4341—‘12)

2 2(‘11‘12"‘13) 1—‘1%*"122""1% 2(4243‘*“11) (19)

C(41:92 43) = ——5—5
2
1+4q; +q"'2’+q3

A. 2
2(q5a,+9) 2(a93-9) 1-4i-93+4;

and in vector form [3]:

Clg) = —— ((1-g"9)I+2g4"-212)) (20)

1+9°¢q

Equation (20) and its inverse can also be written as the Cayley Transform [3;4,6]:
Clg) = U-1@H U+@n~ (212)

[@ = (-0 U+0” (21b)

and the kinematic differential equation shown in equations (16-17) has the “Cayley” form [4]:

dg) = 2~ @) (@l (1 - @) @2)
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The tilde matrix (g] is defined by —[gx...] as given in equation (23).
0 —9; q;
(q1=1q; 0 —q 23)
—q; 4 0

Let the vector gs (defined with -p) denote the shadow point of the classical Rodrigues
parameters. Solving equation (6), or starting with equation (14), the following definition for the gs
is found.

L= i=123 (24)

Equation (24) shows that for the Rodngues parameters, the shadow point vector components
are identical to the original Rodrigues parameters, with identical values and properties. Therefore

the shadow point concept is of no practical consequence in this case; the classical Rodrigues

parameters are unique!

unit

_ S
circle - ;= q;

(Bo:By)
\

Sy

A

N

(‘50,‘[53) mapping
line

Fig. 3. Original and “Shadow Point” Projection of the Classical Rodrigues Parameters.

Having the projection point a at the origin causes this elegant, degenerate phenomenon.
Figure 3 illustrates why both sets of Rodrigues parameters are identical. The classical Rodrigues .

parameters are the only symmetric stereographic parameters which exhibit this lack of distinction
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between the original parameters and their shadow point counterparts, as is evident below. This

proves simultaneously to be an advantage and a disadvantage.

Modified Rodrigues Parameters

The modified Rodrigues parametei's presented by Modi and Tsiotras move the projection point
to the far left of the unit sphere at (-1,0,0,0) and project the Euler parameters onto the hyperplane
at By = 0. This pushes the singularity as far away from the zero-rotation as possible. The
parameters will now go singular at @ =£360°. As Tsioiras points out, this new set of parameters
is able to describe any type of rotation except a complete revolution back to its original
orientation. Carrying out the stereographic projection with ®@g= +360°, the transformation from

‘Euler parameters to the modified Rodrigues parameter vector ¢ and the inverse transformation are

given as:
o, = lfiﬂo i=1,23 (25)
1-dc 20,
= = i=123 26
Bo Tsc'o B; Tiolo i=12 (26)

Using equation (1) again, the modified Rodrigues parameters can be written as (2]:

al o

27

§

This formula immediately reveals the singularity at a principal rotation of +360°, double the
range of the classical Rodrigues parameters. It is interesting that ® = 0° and @ = +360°
correspond physically to the same body orientation. This fact has both theoretical and practical

consequences in “avoiding” the singularity.

N -

(552)- rs+os] o5

The kinematic differential equations in terms of ¢ are given in equation (28). They are very
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similar to equation (16) except for one extra term. This terms makes the equations only slightly

more complicated, but not any more non-linear.

The explicit matrix form for the elements of equation (28) is given as [2]:

(1+c2-c2-02) 2(6,0,~03)  2(003+3) |l
§=% 2(0,0, + ;) (1-c2+ci-03) 2(5,0,-9) || (29)

2(0301—02) 2(0'30‘24-_01) (l—of—o§+o§) b

The direction cosine matrix in terms of the modified Rodrigues parameters {2] can be shown to
be: -

4(0%-—0"2'—0“;) +32 80102+4o32 80l03—4022
1
C(0) =———| 80,0,-40,E 4(-0i+0}-0p +I  80,0;+40,% 30
(1+6%0) | G0
8“1“3"'4“22 80,0, — 4012 4 (—cf —0'§+ og) +X
I=1-g'o
or more compactly in vector form as [3]):
4(1-d0) - -
c@ =128 29 5. @’ 31)
(1+d'0) ~ (1+d9)

The modified Rodrigues parameter vector ¢ is transformed into classical Rodrigues

parameters as:

l-go

7= =) (32)

Naturally, this transformation goes singular at a prinéipal rotation of £180°, because [|o|| — 1

and | g|| — = as ® - £180°.

Comparing equation (27) and equation (18) it is immediately evident that both the classical
and the modified Rodrigues parameter vectors have the direction of the principal rotation vector ¢,

but a different magnitude. The transformation from modified to classical Rodrigues parameters
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shown in equation (32) can be rewritten in terms of the principal angle of rotation ®.
L
@
“ng
g=—20 (33)
“ng
L
~ Using the image set —B (1) of Euler parameters, the shadow point of the modified Rodrigues
parameter vector g is found.
_B_ -0 .
F= L=t (34)
t1-By  Jg
Contrary to the classical Rodrigues parameters, these modified Rodrigues parameter shadow
points are not numerically equal to the original parameters. While they generate exactly the same ®
direction cosine matrix, they are not generally a mirror image of one another. While generally
&’ #—o, note that everywhere on the unit sphere o'c = 1 that, in fact, == -B;- This simple
observation has significant practical consequences. ®
(Bo-B)
L
Bo
o
T~ uflit
('ﬂO"Bi) circle
~——— mapping : o
line :
o}
Fig. 4. Original and “Shadow Point” Projection of the Modified Rodrigues Parameters.
®
The shadow points ¢® have some interesting properties. They go singular at the zero rotation
®
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and go to zero at a £360° principal rotation! This is the exact opposite of the qualitative behavior
of . The reason for this behavior becomes evident in Fig. 4. At a zero rotation, the shadow point
will intersect the mapping line at infinity. At a rotation of +180° the shadow points will be the -
negative of their original values. We note that ¢ is distinguished from g merely for book-keeping
purposes. Transforming initial conditions (from [C] or B) for any given case, could initiate motion

on either o (1) or &° (1) .

Using o together with the shadow vector o’, it is possible to describe any rotation without
singularities and with only three parameters, but with one discontinuity at the switching point. If
the original o (s) trajectory approaches the singularity at @ = +360°, the vector o(r) can be
switched to the shadow trajectory &® (1) . This transformation is very simple as is seen in equation
(34). Rather than waiting until |g ()| - < or |6 (9] - = to switch, however, the most convenient
switching surface is the o7o = 1 sphere; the unit sphere which corresponds to a principal rotation
of +180°. The Euler parameter B, is zero everywhere on this sphere. This causes the shadow point
to have the same unit magnitude as the original with the transformation being o® = —¢. Thus

whenever o (¢) exits (enters) the unit sphere, & (1) enters (exits) at the opposite side of the sphere.

Fig. 5. Illustration of the Original and Shadow Modified Rodrigues Parameter.
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Switching at the ¢’ = 1 surface can be very elegantly accomplished when finding o by
extracting the Euler parameters from the direction cosine matrix. Simply keep 8,20 and the
resulting set of parameters will always have g’g<1 [1]. Switching on the B = 0 sphere (where
oo = o5& = 1) keeps the combined set of original and shadow points bounded within the unit

sphere.

This bounded behavior of the combined set is illustrated in Fig. 5 above. The grey line
represents the ¢ (r) trajectory and the black line the corresponding shadow trajectory of ).
The motion starts out at a zero rotation with the grey line at the origin and the black line at
infinity. After a while the principal angle of the object grows beyond 180° and the grey line exits
the unit sphere. At the same time the shadow parameters (black line) enter the sphere at the
opposite position. If the body rotates back to the original orientation, the shadow parameters
approach zero as the original parameters go off to infinity. Any tumbling motion would give rise

to a qualitatively identical discussion of g (1) and &* (o).
Example of Asymmetric Stereographic Parameters

A sample set of asymmetric stereographic parameter vector 7 is constructed by eliminating

the Euler parameter B and setting a equal to -1. Adjusting equation (4), the vector 3 is defined as:
(35)

Using equation (11,12) the singular principal rotations about the positive By axis become ®gy
= -180° and ®g; =+540°. As mentioned earlier, the direction at which a singular orientation is
approached is important with asymmetric stereographic parameters. Here a negative principal
rotation of 180° about the first body axis causes a singularity. A positive principal rotation of 180°
would yield an identical physical position, yet causes no singularity. Only after a +540° does this
representation go singular, even though this position is the same as +180°. This non-symmetric
principal angle range is due to the fact that the zero rotation point (£1,0,0,0) does not lie on the Bl
axis.

Differentiating equation (35) and using equation (10), the differential kinematic equation for

vector 1 is found to be:
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1-n2+n2+m) 2 m,-my) 2 My+ny)  (le
. 1T+, TR EalvS M2+ 73 1
=zl 2m-mny 2@pny+wp (- 1+ni-ni+nd)||@; (36)
ammy+ny)  (-wi-miend  2m-ngay |1

Note that equation (36) contains no transcendental functions in it and is similar qualitatively to
equation (29). Because 0 is an asymmetric stereographic parameter vector, however, there is less
symmetry in the matrix. This lack of symmetry is linked with the absence of a symmetric
principal rotation angle range. Therefore, equation (36) cannot be written in a more compact

vector as was the case with the symmetric stereographic parameters.

The direction cosine matrix in terms of 7 can be found to be:

ami-ni-nd) +3F  Smmy+4am,E -8, +41,Z
cm) = ——1—;—2 -8, +4n,T 4 mZ+nZ-13) -X  sn,m,+4n,T a7
(+am 81, M, +4n,Z gnm,-4n,E  AG-my+ny) -Z
£=1-1'n

Analogously, asymmetric stereographic parameters could be derived by projecting onto a
hyperplane orthogonal to-the B, or B3 axis, or actually any non-By axis. All these parameters

would have a similar singular behavior.

To illustrate the use of the asymmetric stereographic parameters 1 for describing a spinning
body, a sample motion was generated. The motion was achieved by forcing the following 3-1-3

1

Euler angle time history upon the body.
_ 1 . T 38

0,(n =1 8, = (- cos20) 5 83(n = (sin2) g (38)

The body is mainly spinning about the third body axis while oscillating about the other two.

Therefore the stereographic parameter vector n will never go singular, since a singularity can only

occur with a pure rotation about the first body axis.
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| Fig. 6. Spinning Body Description with Asymmetric Stereographic Parameters.
As Fig. 6 shows, the asymmetric stereographic parameters n are smooth and continuous at all o
time. The sample motion shown performs one and a half revolutions without encountering any
singularity.
o
Legend [
---
— ol
—  lql ®
| J
Fig. 7. Comparison of Symmetric and Asymmetric Stereographic Parameters.
To compare the asymmetric with the symmetric stereographic parameter description for this o
spinning body, the polar plot in Fig. 7 was generated. The magnitude of each parameter vector is
®
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plotted versus the principal rotation angle ¢. As expected, the symmetric stercographic parametecs
go singular at cectain ¢, while the vector 1 is bounded at all times.

Figure 8 shows the time history of the prdacipal rotation angle ¢ for this spinniag body
maneuver. Because of the oscillations about the first and second body axis, ¢ gets reduced during
some poctions of the maneuver. Because the magnitude of the symmetric steccographic

| parameters depends only on the principal rotation angle, these “backing up™ phases are not visible
oa the polar plot in Fig. 7. However, the magnitude of the asymmetric stereographic parameters

depends on both the prncipal rotation angle and the direction of the principal rotation axis. This

explains the more iregular features of the |q| plot in Fig. 7.

600.0077

N o e e A

30000177777 Sk Eainiaiiiet

al rotation angle

150.007

incip

olt

0.00

Fig. 8. Pnncipal Rotation Angle Time History of Spinning Body Maneuver

While some loss in symmeuy and elegance of the equations results, asymmetdc sets of
stereographic parameters are able to represent the motion of a spinning body without switching
between the shadow and the original parameters, like the modified Rodrigues parameters would
requice. In {7] Tsiotras develops a set of orientation parametecs which are also well suited for the
spinning body problem and have a low polynomial degree nonlinearity in their kinematic

equations. They differ in form to the asymmetac stereographic parameters, but are similar in
behavior.
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Globally Stable Control using Modified Rodrigues Parameters

The combined sct of modificd Rodrgues parameters and theic shadow counterparts lead
themselves very well for regulator type control design. Adopting the switching surface ¢g'o = 1
has a surpdising beaefit in designing coatrol laws. Consider the dynamics of a generally tumbling

rigid body. The Lyapunov function
V(w.0) = %@rn_n +2Klog (1 + o7 o) (39)

will not have any discoatinuities at the switching surface, since both the odginal ¢ and its
shadow ¢° point have unit magnitude there! V(w.o) is by inspection only zero if both © and ¢
are 7ero. AS a Consequence, it is easy to establish a globally stable Lyapunov controller with a
thres rotation parameter set which never encounters a singularity! J in equation (39) denotes the
3x3 inerda matix in body axis. The scalar K is a positive feedback gain. For this nonlinear
cegulator type problem, the extemal control torque ¢ is found by setting the time derivative of

equation (39) equal to
V= -0 Po A (40)

with P being a positive definite matrix, and using equation (28) and Euler’s equation of

motion:

Jé = - {@lJo+y @1

to solve for the torque u. Using the logarithm of ¢’g in equation (39) results in a globally
nonlinear conurol law ¢ which is linear in ¢ {2).

= -Pu—-Kg+ (@] Jo (42)

The coatrol law in equation (42) is valid for any arbitrary departure motion ¢. Coaventional
sets of three parameters would eacounter singular odentations. Another problem with
conveational parameter sets is that they have no inhecent mechanism to accommodate tumbling

situations when the object has pecformed a prncipal rotation beyond £180° away from the desiced
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state. When this happens, it would probably be desirable to “help” the object complete the
revolution, rather than to attempt to force it back the way it came. The only set of parameters that
can “almost” handle this scenario is the classical set of Rodrigues parameters. They fail because
they go singular near the “up-side-down™ orientation at ®=+180°. The combined set of o and s,
however, are well behaved up to and well beyond @ = +180°. Switching at ¢’g = 1 makes it
possible for the control law to let the object go past the “up-side-down” orientation and then let it

rotate back to the origin the short way, as we illustrate in an example below.

The angular velocity o feedback is required for global stability, and the P matrix should be

chosen to achieve satisfactory damping of the nonlinear oscillations.

The results of a single-axis spin maneuver using the control law in equation (43) are
presented. The inertia J used was 12000 kgmz; the feedback gains were chosen as K=300 and
P=1800. Initial angular velocity was +60°s. Figure 9 below shows the time history of the
principal angle of rotation. The object clearly spins beyond the “up-side-down” point of ®=+180°
and then returns back to the origin by continuing the motion and completing the revolution. The o

feedback sufficiently dampens the system to prevent excessive oscillations about the origin.

ek
=]
(=]

O
(=
\\

Principal angle ® [deg]
(@]

—
o0
S

o

20 . 40 60 80 100
time [s]

Fig. 9. Principal Angle of Rotation of Spin Maneuver.

The angular velocity, shown in Fig. 10, decreases steadily from +60°/s and converges to zero.

Where the ® goes beyond 180° there is a discontinuity in the slope of o.
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angular velocity o [deg/s]
W
S
LA

0 20 40 60 80 100
time [s]

Fig. 10. Angular Velocity of Spin Maneuver.

The corresponding external control torque is presented in Fig. 11. A large torque is demanded
initially because of the large initial angular velocity @. As @ decreases, so does the torque. There
is a discontinuity where the modified Rodrigues parameter switch from the original to the shadow
point trajectory. This is because the position error ¢ reversed its sign, driving the object towards
the origin about the other 'way. However, the control torque does not jump to a negative value
because of the @ feedback. It keeps the torque positive; i.e. the controller is still slowing down the

spin, even during the switching.

1900
N
\
= 1400
Z,
= 900
=
&
g 4
\‘
-100 T
0 20 40 60 80 100

time [s]
Fig. 11. External Control Torque of Spin Maneuver.

The position error and the associated torque discontinuity due to switching to the shadow
trajectory may be troublesome for highly flexible bodies. However, this is easily addressed in 4

practice by replacing the instantaneous switch by a smooth one. Also, introducing a simple digital

137




24

filter will effectively smooth out such jump discontinuities.

It is conceptually easy to introduce a reference trajectory and design analogous tracking-type
feedback control with, using the methods of 4], global stability guaranteed. This is useful in
achieving global control shaping, and also to permit selection of feedback gains sufficiently large

to reject disturbances.
Conclusion

A new family of stereographic parameters has been presented, including the general
transformation from and to the Euler parameters. The general stereographic parameters are not

unique and have a corresponding set of shadow point parameters whose singular behavior is

diffcrent from the original parameters.

The classical Rodrigues parameters are a special set of the symmetric stereographic
parameters where the original parameters and their shadow points coincide. The modified
Rodrigues parameters are also a special case of the symmetric stereographic parameters. They
have the largest non-singular principal angle range of £360°. Their associated shadow points are
singular at the zero rotation and zero and @ = +360°. This combined set of stereographic
parameters and their shadow point parameters are able to describe any rotation without

encountering a singularity, but with one discontinuity.

The asymmetric stereographic parameters have their singular orientations defined both by an
axis and a principal rotation angle. The two singular angles do not have equal magnitude as with
the symmetric stereographic parameter. Asymmetric parameters do allow rotations beyond +360°

and are therefore attractive to spinning body type problems.

The globally stable control law presented implicitly “knows™ when an object has rotated
beyond +180° from the target state, and to let it complete the revolution back to the desired state.
This control implicitly seeks out the smallest principal rotation angle to the target state. This

control law was developed by making use of the modified Rodrigues parameter and their shadow
points.
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Principal Rotation Representations
of Proper NxN Orthogonal Matrices

Hanspeter Schaub
Panagiotis Tsiotras
John L. Junkins

Abstract

Three and four parameter representations of 3x3 orthogonal matrices are extended to the gen-
eral case of proper NxN orthogonal matrices. These developments generalize the classical Ro-
drigues parameters, the Euler parameters, and the recently introduced modified Rodrigues param-
eters to higher dimensional spaces. The developments presented are motivated by, and signifi-
cantly generalize and extend the classical result known as the Cayley transformation.

Introduction

It is well known in rigid body dynamics, and many other areas of Euclidean analysis, that the
rotational coordinates associated with Euler’s Principal Rotation Theorem [1,2,3] lead to espe-
 cially attractive descriptions of rotational motion. These parameterizations of proper orthogonal
3x3 matrices include the four-parameter set known widely as the Euler (quaternion) parameters
[1,2,3], as well as the classical three-parameter set known as the Rodrigues parameters or Gibbs
vector [1,2,3,4]. Also included is a recently introduced three parameter description known as the
modified Rddrigues parameters [4,5,6]. As we review briefly below, these parameterizations are
of fundamental significance in the geometry and kinematics of three-dimensional motion.

Briefly, their advantages are as follows:

Euler Parameters: This once redundant four-parameter description of three-dimensional rota-
tional motion maps all possible motions into arcs on a four-dimensional unit sphere. This accom-
plishes a regularization and the representation is universally nonsingular. The kinematic differen-

tial equations contain no transcendental functions and are bi-linear without approximation.

Classical Rodrigues Parameters: This three parameter set, also referred to as the Gibbs vec-
tor, is proportional to Euler’s principal rotation vector. The magnitude is tan(¢/2), with ¢ being

the principal rotation angle. These parameters are singular at ¢ = +7 and have elegant, quadrati-
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cally nonlinear differential kinematic equations.

Modified Rodrigues Parameters: This three parameter set is also proportional to Euler’s prin-
cipal rotation vector, but with a magnitude of tan(¢/4). The singular orientation is at ¢ =12, dou-
bling the principal rotation range over the classical Rodrigues parameters. They also have a quad-

ratic nonlinearity in their differential kinematic equations.

The question naturally arises; can these elegant principal rotation parameterizations be ex-
tended to orthogonal projections in higher dimensional spaces? Cayley partially answered this
question in the affirmative; his “Cayley Transform” fully extends the classical Rodrigues parame-
ters to higher dimensional spaces [1,2,7]. A proper NxN orthogonal matrix can be generally para-
meterized by a vector with dimension M = ¥2N(N-1). Only for the 3x3 case is N equal to M. Any
proper orthogonal matrix has a determinant of +1 and can be interpreted as analogous to a rigid
body rotation representation. This paper extends the classical Cayley transform to parameterize a
proper NxN orthogonal matrix into a set of M-dimensional modified Rodrigues parameters. Fur-
ther, a method is shown to parameterize the NxN matrix into a once-redundant set of

(M+1)-dimensional Euler parameters.

The first section will review the Euler, Rodrigues and the modified Rodrigues parameters for
the 3x3 case, generalized later in this paper to parameterize the proper NxN orthogonal matrices.
The second section will review the classical Cayley transform resulting with the representation of

"a proper orthogonal matrix using the Rodrigues parameters, followed by the new representation

of the NxN orthogonal matrices using an M-dimensional set of modified Rodrigues parameters,
and finally, a new representation of the NxN orthogonal matrices using an (M+1)-dimensional

Euler parameters.

Review of Three-Dimensional Rigid Body Rotation Parameterizations

The Direction Cosine Matrix

The 3x3 direction cosine matrix C completely describes any three-dimensional rigid body ro-
tation. The matrix elements are bounded between *1 and possess no singularities. The famous

Poisson kinematic differential equation for the direction cosine matrix is:

C=-[®]C (D
where the tilde matrix is defined as
5 0 -3 o
[@]=] w3 0 - ()
- O 0




The direction cosine matrix C is orthogonal, therefore it satisfies the following constraint.
cfc=cCt =1 A3)

This constraint causes the direction cosine matrix representation to be highly redundant. In-
stead of considering all nine matrix elements, it usually suffices to parameterize the matrix into a
set of three or four parameters. However, any minimal set of three parameters will contain singu-

lar orientations.

The constraint in equation (3) shows that besides being orthogonal, the direction cosine matrix

is also normal [8]. Consequently it has the spectral decomposition
C=UAU" C)

where U is a unitary matrix containing the orthonormal eigenvectors of C, and A is a diagonal
matrix whose entries are the eigenvalues of C. The * symbol stands for the adjoint operator,
which takes the complex conjugate transpose of a matrix. Since C represents a rigid body rota-

tion, it always has a determinant of +1.

- The Principal Rotation Vector

Euler’s principal rotation theorem states that in a three-dimensional space, a rigid body (refer-
ence frame) can be brought from an arbitrary initial orientation to an arbitrary final orientation by
a single principal rotation (¢) about a principal line & [3].

A%

53 l|l¢ / T ¢

b

............... e

Fig. 1: Euler’s Principal Rotation Theorem.
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With reference to Fig. 1, the body axis b; components of the principal line € are identical to

the spatial components projected onto #;.

€y
{ez}=é=C-é %)
€3

Therefore ¢ must be an eigenvector of the 3x3 C matrix with a corresponding eigenvalue of
+1. If the 3x3 C matrix has an eigenvalue of -1, the matrix represents a reflection, not a proper ro-
tation and the principal rotation theorem does not hold. In this case the det(C) would be +1. The

principal rotation vector ¥ is defined as:
¥=¢2 ©

Let us now consider the case where a rigid body performs a pure single-axis rotation about the
fixed &. This rotation axis is identical to Euler’s principal line of rotation &. Let the rotation angle

be ¢. The angular velocity vector for this case becomes:
& = ¢é Q)
or in matrix form: |
(@] = ¢[2] | ®)
Substituting equation (8) into (1), one obtains the following development.

dc _ do

- —E[é]c
ac .
E =- [e]C
C = 0] )

The last step follows since the [£] matrix is constant during this single axis maneuver. Due to
Euler’s principal rotation theorem, however, any arbitrary rotation can always be described instan-
taneously by the equivalent single-axis principal rotation. Hence equation (9) will hold at any in-
stant for an arbitrary time-varying direction cosine matrix C. However, ¢ and & must be consid-

ered time-varying functions. Using the following substitution
[Y] = olé€] (10)

equation (9) can be rewritten as [2]
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C=eM=Y (- [ an
n=0
Instead of using an infinite matrix power series expansion of equation (11) to find C, the ele-
gant finite transformation shown below can be used [2]. That is, the evaluation of ¢~ does not
require the spectral decomposition of [¥], but can be written directly in term of ¥ itself. Unfortu-
nately, this transformation only holds for the 3x3 case. A general transformation for the NxN
case is unknown at this point, at least as far as the authors know.

¢ = cosg — [£]sing — &&7 (cosp— 1) (12
o=I7ll, &=7/¢

To find the inverse transformation from the direction cosine matrix C to [] , the matrix loga-
rithm can be taken of equation (11) to obtain

(71 =-logC= 3 >-(I-C)' 13
n=1

Using the spectral decomposition of C given in equation (4), the above equation can be rewrit-

ten as
[¥] = —log(UAU* ) = — U(logA)U* o (14)

where calculating the matrix logarithm of a diagonal matrix becomes trivial. Since all eigen-
values of an orthogonal matrix have unit norm, the matrix logarithm in equation (14) is defined
everywhere except when an eigenvalue is -1. Generally, equation (14) will return a [¥] which
corresponds to a principal rotation angle ¢ in (-180°,+180°). Note however, that when C has ei-
genvalues of -1, equation (14) does not return a skew-symmetric matrix. The transformation
breaks down here for this singular event. The geometric interpretation is that a 180° rotation has
been performed about one axis (leading to one positive and two negative eigenvalues of C), which
is the only rotation not covered by the domain of equation (14).

The principal vector representation of C is not unique. Adding or subtracting 2 from the prin-
cipal rotation angle ¢ describes the same rotation. As expected, equation (11) will always yield
the same C matrix for the different prinéipal rotation angles, since all angles correspond to the
same physical orientation. However, the inverse transformation given in equation (14) yields only
the principal rotation angle which lies between -180° and +180°.

As do all minimal parameter sets, the principal rotation vector parameterization has a singular

orientation. The vector is not uniquely defined for a zero rotation from the reference frame. The
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principal rotation vector parameterization will be found convenient, however, to derive useful rela-

tionships.

The Euler (Quaternion) Parameters

The Euler parameters are a once-redundant set of rotation parameters. They are defined in
terms of the principal rotation angle ¢ and the principal line components e; as follows:

Bo =cos%, B: =e,-sing- i=1,23 (15)

They satisfy the holonomic constraint:
B3 + B} + B3 +B3 =1 (16)

Equation (16) states that all possible Euler parameter trajectories generate arcs on the surface
of a four-dimensional unit hypersphere. This behavior bounds the parameters to values between
+1. However, the Euler parameters are not unique. The mirror image trajectories P(t) and -B(t)
both describe the identical physical orientation histories. Given a 3x3 orthogonal matrix, there
will be two corresponding sets of Euler parameters which differ by a sign. The Euler parameters
are the only set of rotation parameters which have a bi-linear system of kinematic differential

equations [1], other than the direction cosine matrix itself, as follows

Bo Bo —B1 —B2 -B37]
ﬁl ____1_ Bl BO “53 BZ ()] (17)
B, 2|B2 B3 Bo —Bi||22
5,) LBs-B B Bl

It is also of significance that the above 4x4 matrix is orthogonal, so “transportation” between

’s and B,- ‘s is “painless”. The direction cosine matrix in term of the Euler parameters is [1,3]

B2 +Pp2 —P3 P 2(B1B2+PBoB3) 2(B1P3 —PoB2)
[C1=| 2(B1B2 —BoB3) B2 —B2+PB3—PB3 2(B2B3+BoB1) (18)
2(B1B3 +BoB2) 2(B2Bs —PBoB1) B3P} -B3+B3

The Euler parameters have several advantages over all minimal sets of rotation parameters.
Namely, they are bounded between 1, never encounter a singularity, and have linear kinematic
differential equations if the mi(t) are considered known. All of these advantages are slightly offset

by the cost of having one extra parameter.
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The Classical Rodrigues Parameters

The classical Rodrigues parameter vector § can be interpreted as the coordinates resulting
from a stereographic projection of the four-dimensional Euler parameter hypersphere onto a
three-dimensional hyperplane [6), with the projection point at the origin and the stereographic
mapping hyperplane at BO =+1. Asdiscussed in [6], it follows that they have their singular orien-
tation at a principal rotation angle of ¢ = +180° from the reference. Their transformation from

the Euler parameters is

¢Ii=“§’(i; i=1,23 (19)

Unlike the Euler parameters, the Rodrigues parameters are unique. The q; uniquely define a
rotation on the open range of (-180°,+180°) [6]; as is evident in equation (19), reversing the sign
of the Euler parameters has no effect on the g;. Using equation (15), the classical Rodrigues pa-
rameters can also be defined directly in terms of the principal rotation angle and the principal axis

Components as
gi = e,'tan% i=1,2,3 20)

It is apparent that § has the same direction as the principal rotation and the magnitude is
tan(¢/2) . The singular condition of ¢ =*180° is evident by inspection of equation (20). The
kinematic differential equation for the Rodrigues parameters contain a quadratic nonlinear depen-

dence on the g;. They can be verified from equations (17,20) to be [1-4]

a 1+ q192-93 NP3+a2] g,

hi=5|pa+e 144 @a-a {wz} (21)
q 2 2 |los

3 BN -9 Bpt+a 1+43

[S=Y

Notice that the above coefficient matrix is not orthogonal, although the inverse is well be-
haved everywhere except at ¢ = £180° where |G} — . The direction cosine matrix in terms of
the Rodrigues parameters is [1-4]:

1+ -2 -3 2(qiq2+43)  2(q143—42)
20pq -93) 1-¢+¢ -3 2(qq3+4q1) (22)
Apqr+q2) 2 @3q2—-q1) 1—-q2 -3 +43

1
1+¢? +45+43

()

The Modified Rodrigues Parameters

The modified Rodrigues parameter vector & is also a set of stereographic parameters, closely

related to the classical Rodrigues parameters [2,4-6]. The modified Rodrigues parameters have
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the projection point at (-1,0,0,0) and the stereographic mapping hyperplane at BO = 0. This projec-
tion results in a set of parameters which do not encounter a singularity until a principal rotation
from the reference frame of +360° has been performed. Therefore they are able to describe any
rotation except a complete revolution +360°. Their transformation from the Euler parameters is

Bi -
: = =1,2, 23
Oj 1+ 1 3 (23)

While the classical Rodrigues parameters have a singularity at B=0 (0= +180°), the modified
Rodrigues parameters have moved the singularity out to a single point at B0=-1 (6 =%360°). Fig-
ure 2 below illustrates these two singular conditions. Since the classical Rodrigues parameters are
only defined for —180° < ¢ <+180°, they can only describe rotations on the upper hemisphere
of the four-dimensional unit hyper-sphere where B0>O. However, the modified Rodrigues parame-
ters can describe any rotation on this hypersphere except the point [30=-1. Therefore the modified
Rodrigues parameters have twice the nonsingular range as the classical Rodrigues parameters.

4D Unit Hyper-Sphere

with B3+ +p3+5=1 Bp=+1

o0°
\

origin

Bo=-1 “ Bo=0
(Modified Rodrigues (Rodrigues Parameter
Parameter singularity point) singularity surface)

Fig. 2.: Hlustration of the Singular Conditions of the Classical and
the Modified Rodrigues Parameters.

Like the Euler parameters, the modified Rodrigues parameters are not unique. They have an
associated “shadow” set found by using -B(t) instead of B(t) in equation (23) [5,6]. The transfor-
mation from the original set to the “shadow” set is [2,5,6]

of =2 i=1,23 24)
66
The “shadow” points are denoted with a superscript S merely to differentiate them from o;.

Keep in mind that both Gand & describe the same physical orientation, similar and related to the

case of the two possible sets of Euler parameter and the principal rotation vector. It turns out that
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the modified Rodrigues “shadow” vector &3 (1) has the opposite singular behavior to the original
vector (). The original parameters have differential kinematic equations which are very linear
near a zero rotation and are singular at a £360° rotation. On the other hand, the “shadow” parame-
ters have differential kinematic equations which are linear near the $360° rotation and singular at
the zero rotation. [6] Using equation (15), the definition for the modified Rodrigues parameters in
equation (23) can be rewritten as [4]
o; = e,-tan%)- (25)

Equation (25) is very similar to equation (20), except for the scaling factor of the principal ro-
tation angle. The singularity at +£360° is evident in equation (25), and small rotations behave like
quarter angles. All three parameter representations must possess a singularity. This set max-
imizes the nonsingular principal rotation range to +360°. The following differential kinematic
equations display a similar degree of quadratic nonlinearity as do the corresponding equations in

terms of the classical Rodrigues parameters [4-6]

1+02 -0} -03 2(06102-03) 2(6103+02) |
2(0201 +03) 1-02+05-03 2(0203—G1) {0)2} (26)
2(0301 —062) 2(0302+01) 1-0}—03+03

aw
I
o o

Note that the coefficient matrix of the differential kinematic equation is not orthogonal, but al-
most. Multiplying it with its transpose yields a scalar (1 +37 6)2 times the identity matrix. As
far as we know, this is the only three parameter representation possessing this elegant property;
further attesting to the uniqueness and importance of the modified Rodrigues parameterization.
This almost orthogonal behavior allows for a simple transformation between the o; and the &;

) 4(6%—0%—6§)+22 8010, +403X 85,03 —462%
e I R o L A
80301 +402X 8030, —401X 4(-c? -0} +03)+ 32
£=1-675

The direction cosine matrix is shown above [6,9]. It has a slightly higher degree of nonlinear-
ity than the corresponding direction cosine matrix in terms of the classical Rodrigues parameters.
Parameterization of Proper NxN Orthogonal Matrices

A proper orthogonal matrix is an orthogonal matrix whose determinant is +1. Some aspects
of parameterizing proper NxN orthogonal matrices into M-dimensional Rodrigues parameters
have been studied recently by Junkins and Kim [1] and Shuster [2]. Keep in mind that M =
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14N(N-1). These classical developments, generalizing the Rodrigues parameters to NxN proper
rotation matrices, date from the work of Cayley [7] and are included below for comparative pur-

poses with the new representations.

Any NxN orthogonal matrix abides by the constraint given in equation (3). This equation is an
exact integral of equation (1), as can be verified by differentiation of equation (3) to obtain

cTe+Ccfé=0 (28)

The ¢ matrix defined in equation (1) can be shown to satisfy this condition exactly. Substi-
tute equation (1) into (27) and expand as follows

(- [®)1C) C+CT (- [®]C) =0
(-cTi@1")c-CT@)Cc=0
cT(-[@] - [®])C=0

The above statement is obviously satisfied if [®] is a skew-symmetric matrix, €.g.
[@®]=-[®]7 . Consequently equation (1) will generate an NxN orthogonal matrix, as long as
[®] is skew-symmetric and the initial condition C(t=0) is orthogonal. This observation allows
for the evolution of NxN orthogonal matrices to be viewed as higher dimensional direction cosine
matrices, somewhat analogous to the motion generated by a “higher dimensional rigid body rota-
tion,” and also suggests parameterization of of higher dimensional rigid body-motivated rotation

parameters.

Higher Dimensional Classical Rodrigues Parameters

Cayley’s transformation [7] parameterizes a proper orthogonal matrix C as a function of a

skew-symmetric matrix Q; these elegant transformations are

C=(I-Q)I+Q)'=U+0)'U-0) (29a)
o=(-C)I+C)t=u+0)tu-o) (29b)

The Cayley’s transformation is one-to-one and onto from the set of skew-symmetric matrices
to the set of proper orthogonal matrices with no eigenvalues at -1. Notice the remarkable truth
that the forward and inverse transformations are identical. The transformation in equation (29b)
fails if any of the eigenvalues of C are -1, because the /+C matrix becomes singular and is thus
not invertible. The Cayley transformation in equation (29a) produces only proper orthogonal ma-
trices C with det(C)=+1. This can be verified by examining the determinant of C as shown below.

Using equation (29a), det(C) can be expressed as
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_det(I-Q)

det(C) = det(I- Q)det((I+Q)™') = det(I+ Q)

Since the Q matrix is skew-symmetric, it has purely imaginary complex conjugate pairs of ei-
genvalues of the form iA;. Let R be the corresponding eigenvector matrix to Q. Multiplying and
dividing the above equation by det(R) yields

det(C)  det(R)det(I— 0)/det(R) _ det(R)det(I- Q)det(R"")
€)= GerR)det(T+ Q)/det(R) _ det(R)det(I+ Q)det(R )

det(R(I-Q)R™!) _det(I-ROR™")
det(R(I+ Q)R™!) ~ det(I+ROR™")

det(C) =

where the ROR™! term is a diagonal matrix containing the eigenvalues of the Q matrix. Since

the determinant of a matrix is the product of all the eigenvalues, the above can be written as

b (=) (1+idy) T (1+3)

det(C) = - — =
F (1+ikg)(1—iMy) i (1+27)

=+1 ged

where p is the number of nonzero (imaginary) eigenvalues of Q. The above statement proves
that all C matrices formed with equation (29a) are indeed proper matrices. For the 3x3 case, let
the Q matrix be defined as the following skew-symmetric matrix:

0 -¢3 @
Q=[é]=[qs 0 —41] (30)
-2 q1 O

After substituting equation (30) into (29a), it can be verified that resulting C matrix is indeed
equal to equation (22). Cayley’s transformation (29) is a generalization of the classical Rodrigues
parameter representation for NxN proper orthogonal matrices [1,2], while the Q matrix gener-
alizes the Gibbs vector in higher dimensions [2,10].

Using the [¥] matrix defined in equation (14) the Q matrix can be expressed as follows [2]:
— [¥] _ Mmoo Iy @ @yl
Q’”‘a“h(’z_)‘“(“‘e P)(e +e77) €3]

The above transformation can be verified by performing a matrix power series expansion of
equation (31) and substituting it into a matrix power series expansion of equation (29a). The re-
sult is a matrix power series expansion for the matrix exponential function as expected from equa-
tion (11). However, equation (12) cannot be used to calculate the matrix exponentials, since this
equations only holds for the 3x3 case. Note the similarity between equation (31) and (20). Both
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calculate the Rodrigues parameters in terms of half the principal rotation angle!

The differential kinematic equations of the C matrix were shown in equation (1), where the
skew-symmetric matrix [®] is related to Qand Q via the kinematic relationship [1]

[@]=2(/+0)'0U-0)" (32)

or conversely, O can be written as

0= U+ OBII-0) ()

The equations (32-33) are proven to hold for the higher dimensional case in reference 1. For

NxN orthogonal matrices, [®] =— [GJ]T represents an analogous “angular velocity” matrix.

Higher Dimensional Modified Rodrigues Parameters

As is evident above, the modified Rodrigues parameters have twice the principal rotation
range as the classical Rodrigues parameters. It can be shown that the higher dimensional mod-
ified Rodrigues parameters also have twice the nonsingular domain as the higher dimensional

classical Rodrigues parameters.

To find a transformation from the NxN proper orthogonal matrix C to the modified Rodrigues
parameters, let us first examine what happens when taking the matrix square root of C. Let the

square root matrix W be defined by the necessary, but not sufficient condition

WW=C 34

Obviously, for the general NxN case, there will be many W matrices that satisfy equation (34).
Using the spectral decomposition of C given in equation (4), the spectral decomposition of W can

be written as
W=U/AU" (35)

Since the C matrix is orthogonal, all the eigenvalues in A must have unit magnitude. Keep in
mind that the A matrix in equation (35) is diagonal and that the matrix square root is trivial to cal-
culate. Since taking the square root of an eigenvalue with unit magnitude results in another ex-
pression with unit magnitude, the W matrix itself is unitary, or orthogonal if all entries are real. It
turns out that W is always real and orthogonal, as long as no eigenvalue of C is -1. If an eigen-
value of C is -1, then W has complex values and is a unitary matrix. The product of all eigenval-
ues of C is the determinant of C and must be +1 since C is proper. For even dimensions of C, the

eigenvalues must all be complex conjugate pairs for the det(C) to be +1. For odd dimensions, the
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extra eigenvalue must be real and +1 in order for the matrix to be proper.

Each time a square root is calculated, there are two possible solutions. If the eigenvalue in
question is one of the complex conjugate pairs, then the sign does not matter for W to be a proper
matrix. If the matrix dimension is odd, then the root of the extra eigenvalue must be +1 for W to
be proper. In the 3x3 case there is only one complex conjugate pair of eigenvalues. Hence only
two W matrices satisfy the above conditions. This is to be expected, since any three-dimensional
rotation can be described by two principal rotation angles which differ by 2x, one of which is pos-
itive and the other is negative. To make the choice of W unique, let us select all the roots of the

complex conjugate pairs to have a positive real part.

Since the W matrix is orthogonal, with one exception, it has a principal line and angle asso-
ciated with it. If the C matrix had an eigenvalue of -1, the same numerical problems arise as we
encountered with finding the principal rotation vector. Multiplying W with itself in equation (34)
simply doubles the principal angle, but leaves the principal line unchanged. Therefore W repre-
sents a rotation about the same principal line as C, but with half the principal angle. This pro-
vides conceptually elegant interpretations of the square root of C as defined above..

For three-dimensional rotations, the simple restriction on the square roots of the eigenvalues
can be shown to restrict the principal rotation angle to satisfy —180° < ¢ <+ 180°. This choice is
consistent w1th many numerical matrix manipulation packages and their computation of a square
root of a matrix. Let the j-th complex conjugate eigenvalue of C be denoted as ¢ | where the
the phase is — 180°<9; <+ 180°. If the dimension N is an odd number, W has the structure

.0
&0 0 0 0]
.8
0 2 0 0 0
W=U o 0 0y (36)
0 0 &5 0
O
0o 0 0 o0 7T
Lo 0 0 0 0 +1d
If the dimension N is even, then W is
fHF 0 - 0 0
0 e+ ... 0 0
w=U-| : : ... 0 o |-U (37
0 0 0" o
8,

0 0 0 0 et

Using the parameterization given in equation (11), the matrix W can also be written directly in
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terms of the principal rotation matrix [¥] as follows
-7l
W=e 2 (38)

This solution for W can be verified by substituting it into equation (34). Comparing equation
(38) with equation (11) it becomes obvious that the W matrix has indeed the same principle rota-
tion direction as C, with half the principle angle. Since, for three-dimensional rotations, there are
two possible principal angles for a given attitude, there are two possible solutions for equation
(38). Again, by keeping |¢] < 180°, the same W matrix is obtained as with the matrix square root

method discussed above.

Remember that the modified Rodrigues parameters have a nonsingular range corresponding
to 4] <360°. Since W is the direction cosine matrix corresponding to half of the principal rota-
tion angle of C, the resulting nonsingular range of the W matrix has been reduced to |§] < 180°.
This is the same nonsingular range as the classical Rodrigues parameters. Therefore the Cayley
transformations, defined in equations (29a,b), can be applied to W. Let S be the skew-symmetric
matrix composed of the modified Rodrigues parameters, similar to the construction of the Q ma-

trix in equation (30). Then the transformation from W to S and its inverse are given as:
W=(U=-8S)U+S)=U+8S)1U-S) (39a)
S=(I-W)J+W) ' =1+ Wy t(I-w) (39b)
Using equation (39a) and (34), a direct transformation from S to C is found.
C=(-5)2U+8) 2 =+S5)2(U-5)? (40)

This direct transformation is very similar to the classical Cayley transform, but no elegant di-
rect inverse exists (i.e. we lose the elegance of equation (29b); no analogous equation can be writ-
ten for S as a function of C). This is due to the overlapping principal rotation angle range of
+360° causing the transformation in equation (40) not to be injective (one-to-one). Since the clas-
sical Rodrigues parameters are for principal rotations between (-180°,+180°), they have a unique

representation and the Cayley transform has the well known elegant inverse.

However, an alternate way to obtain the S matrix from the C matrix is available through the

skew-symmetric matrix [¥] defined in equation (14).

= tanh( L) - - (¢ - ) ety @

The transformations given in equation (41) can be verified by performing a matrix power se-
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ries expansion and back-substituting it into equation (40). Note again the similarity between equa-
tion (41) and equation (25). The principal rotation angle is divided by four in both cases.

Either the W or the [¥] matrix can be solved from the proper NxN orthogonal C matrix to ob-
tain the corresponding S matrix. Neither method is as elegant, however, as equation (29b) of the
Cayley transformation. The method using the [¥] matrix has the advantage that [Y] is found by
taking the matrix logarithm of the eigenvalues of the C matrix as shown in equation (14). The
uniqueness questions do not arise here as in the matrix square root method because solutions are
implicitly restricted to proper rotations with |¢] < 180°. Both methods produce the same results
using, for example, the matrix exponential and matrix square root algorithms available as MAT-
LAB or MATHEMATICA operators. Note that both the classical and the “updated" Cayley trans-
form have numerical problems when transforming a proper orthogonal matrix C into a

skew-symmetric matrix if C has eigenvalues of -1.

Since each set of modified Rodrigues parameters has its associated “shadow” set [6], it is usu-
ally not important which S parameterization one obtains, as long as at least one valid S matrix is
found. Once a parameter set is found, either the original ones or the “shadow” set, it is trivial to
remain with this set during the forward integration of the differential equations governing the evo-

lution of S.

The differential kinematic equations for S are not written directly from C as they were with
the classical Cayley transform. Instead W is used to describe the kinematics of the NxN system.
The relationship between W and S is the same as between C and Q. Therefore the same equations
can be used. The differential kinematic equation for W is:

W=-[Q]w “2)
where the skew-symmetric matrix [®] is:
[Q]=20+8)'8U-5)" (43)

or conversely S could be defined as:
.1 ~
S=§(I+S)[Q](I—S) (44)

Equation (34) can be used during the forward integration to obtain C(t). The time evolution of
C in terms of W and [Q] is:

¢ =-[Q)ww-Ww[Q]W=-[Q]C-W[Q]W (45)

Equating equation (45) and (1), the direct transformation from [Q] to [@] is:
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[®] = [Q] + W[Q]WT (46)

To verify that equation (46) yields a skew-symmetric matrix [®] , the definition of a

skew-symmetric matrix is used:
(@] = [@17 =~ ([@]+ WQIwT)"
[@1=-[0]" - (W) e w"
[@] = [Q] + W[Q]WT g.ed.

Although this new parameterization is somewhat more complicated than the classical parame-
terization into M-dimensional Rodrigues parameters, the complications arise only when setting up
the parameterization in terms of S. Once an S matrix and a corresponding W matrix have been
found, this method is no different from the classical method. The important improvement is that

the range of possible principle rotations has been doubled over the classical M-dimensional Ro-

drigues parameters.

A Preliminary Investigation of Higher Dimensional Euler Parameters

The classical Euler parameters stood apart from the other parameterizations, because they
were bounded, universally nonsingular and had an easy-to-solve bi-linear differential kinematic
equations. All of these attractive features were only slightly affected by the cost of increasing the
dimension of the parameter vector by one. These classical Euler parameters are extended below
to higher dimensions, where they will retain some, but not all, of the above desirable features.

The Rodrigues parameters and the Euler parameters are very closely related as seen in equa-
tion (19). They are identical except for the scaling term of BO. The classical Rodrigues parame-
ters have been shown to expand to the higher dimensional case where they parameterize a NxN or-
thogonal matrix C [1]. Analogous to equation (19), they can always be described as the ratio ofa

once-redundant set of parameters.

g=5 i=1,2,3,...M =201 (47)
Bo 2

The skew-symmetric matrix Q in equation (29a) can be written as:

1
=—B 48

where B is a NxN skew-symmetric matrix containing the numerators f; of Q. For the three

dimensional case, this matrix is the “vector" part of the classical Euler parameters Bl’ [32, B3, and
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has the familiar structure
0 -B B2
B=| B 0 -B (49)
-B, B1 O

Substituting the transformation relating Q to {BO’BI""’BM}’ as given in equation (48) the Cay-
ley transform of equation (29a) results in the following

C = (Bol - B)(Bol +B)™’
C(Bol+B) = (BoI-B)

(I-C)o-(I+C)B=0 (50)
Equation (50) represents an NxN system of linear equations in {BO’BI’""BM}' Let the
[N2x(M+1)] matrix A represent the linear relationship between the Bi'
Bo
A- ﬁ:l =0 (51)
Bum

Clearly the set of all possible higher dimensional Euler parameters spans the kernel of A. We
know that the M Rodrigues parameters are a minimal set to parameterize the orthogonal NxN ma-
trix C. By adding the scaling factor BO, a once redundant set of parameters has been generated.
Even though there are N2 linear equations in equation (50), the dimension of the range of A is
only M. The problem is still under determined. The dimension of the kernel of A must be one,

since only one additional term was added to a minimal set of rotation parameters. The solution

space is a multi-dimensional line through the origin.

7

Multi-Dimensional
Unit Sphere

Fig. 3: Solution of the Higher Dimensional Euler Parameters.
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After finding the kernel base vector, an infinite number of solutions still exist. Another con-
straint is needed. Let us set the norm of the higher dimensional Euler parameter vector to be

unity. This concept is illustrated in Fig. 3 above.
B3+ B+ -+ Bl =1 (52)

Equation (52) is the higher dimensional equivalent of the holonomic constraint of the classi-

cal Euler parameters introduced in equation (16).

Two solutions are found scaling the base vector of the kernel of A to unit length. Just as with
the classical Euler parameters, any point on the multi-dimensional Euler parameter unit sphere de-
scribes the same physical orientation as its antipodal pole. Therefore the higher order Euler pa-
rameters are not unique, but contain a duality. This is exactly analogous to the classical case.

This duality does not pose any practical problems, except under one circumstance discussed

below.
C = (BoI-B)(Bol+B)™" = (Bol +B)™" (Bol~B) (53)

The inverse transformation from higher order Euler parameters to the orthogonal matrix C is
found by using Q from equation (48) in the classical Cayley transform. The result is shown in
equation (53). Using a B, as shown in equation (49) for the three-dimensional case, in equation
(53) results in the same transformation as given in equation (18). Observe that the inverse trans-
formation has a singularity when o is zero. This singularity is a mathematical singularity only.
Contrary to the Rodrigues parameters, the higher order Euler parameters are well defined at this
orientation. After an appropriate skew-symmetric matrix B is constructed and carrying out the al-

gebra in equation (53), a closed form algebraic transformation is found

For the 2x2 case, the B matrix is given by

B=| gl 'ﬁ‘] (54)

Using the B defined above in equation (53), the 2x2 direction cosine matrix Cis:

B3 —BT 2BoBo ] 55)

€22 = [— 2BoPo B2 - B2

The 2x2 C matrix contains no polynomial fractions and is easy to calculate. To find the direc-

tion cosine matrix for the 3x3 case, use the B matrix defined in equation (51) in equation (53).
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Bo(B2 +B2 — B2 —B3) 2Bo(BiB2+BoB3)  2Bo(B1B3 —Bop2)
2B0(B1B2 —PoB3) Bo(BZ B2 +B3—B3) 2Bo(B2B3 +Bob1)
2Bo(B1Bs +BoB2)  2Bo(B2B3 —PoB1)  PBo(B3 - B} -B3 +B3)

Can = 1
" Bo(B3 + B} +B3 +B3)

After making the obvious cancellations and enforcing the holonomic constraint equation, the
well known result is found which represents the 3x3 direction cosine matrix as a function of the
classical Euler parameters as given in equation (18). This classical representation contains no

polynomial fractions and no singularities, just as was the case with the 2x2 system.

For dimensions greater than 3x3’s, however, the algebraic transformation contains polynomial
fractions. The nice cancelations that occur with a 2x2 and a 3x3 orthogonal matrices do not occur
with the higher dimensions. This might have been anticipated, because [2] it is well-known that
quaternion algebra does not generalize fully to arbitrary higher-dimensional spaces, and the ele
gant classical Euler parameter results are essentially manifestations of quaternion algebra. To
find Cyy4 in terms of the higher dimensional Euler parameters, we define the 4x4 B matrix as:

iy

_| Bs 0 =B b

Byxa = _Bs B3 0 _Bl (56)
By =B2 B O

and substitute it into equation (53), this leads to

B2(BZ + B2+ P2 +P3 B3 —BZ—B2) -8  2Bo(Bo(B2Bas +B3Ps +PoBs) +P13)
1| 2Bo(Bo(B2Ba +BsBs —BoBs) —B18)  BZ(B3 + B} — B3 —B% +BF + B3 - B) -8 .

Caxs =—

Al 2Bo(Bo(PoBs + B3Bs — B1Bs) — B23) 2B0 (Bo(B1 B2 — PoBs + BsPs) — Pad)
2B0(Bo(— BoBa —B1Bs — B2Bs) —B38)  2Bo(Bo(B1Bs + BoP2 — BaPs) — Bsd)

2Bo(Bo(— BoBs + B3Bs —BiBa) +B28)  2Bo(Bo(BoBs —B1Bs — B2Pes) + B3d) 7
2Bo (Bo (B1B2 + BoPB3 + BsBes) + Bad) 2Bo(Bo(B1B3 — BoB2 —BaBs) + Bsd) :
B2(B2 P2+ P2 -P3+ B3 —PBZ+PB2) -8  2Bo(Bo(BoBi +BaPs +B2P3) + Bed)
2Bo(Bo(~ BoB1 + BaBs + B2B3) —BeS)  BZ(BZ — B2 — B3 + B3 — B + B} + B3) - &°

with 8= PB3Bs + B1Ps — B2Bs
A=p3+82

This denominator A can vanish for several B, configurations. Observe, however, that when-
ever A is zero, so is the numerator. For each singular case we can confirm that a finite limit ex-
ists, as was to be expected, since the original orthogonal C matrix was finite. In all cases Bo=0
is a prerequisite for a (0/0) condition to occur. Finding the transformations for matrices with di-
mensions greater than 4x4 would show the same behavior. o =0 is always a indicator that a
mathematical singularity may occur. In none of these cases are the higher dimensional Euler pa-

rameters themselves actually singular. It is always a mathematical singularity of the transforma-
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tion itself. To circumvent this problem for particular applications, the limit of the fraction can be
found as By — 0. After substituting Bo = 0 into equation (57), for example, most fractions be-

come trivial and the matrix is reduced to

-1 0 0 O
C4x4=[ 8 -(1) _? 8]=—I4x4 (58)
0 0 0-1

Substituting Bo = 0 into equation (55) yields the same result. Actually, as long as C is of even
dimension the matrix will be -1 if Bo = 0. If the dimension is odd, as it is for the 3x3 case, the C
matrix will be fully populated. With this observation it is easy to circumvent the singular situa-
tions if the dimension is even. If the dimension is odd a numerical limit must be found. In either
case the transformation will be well behaved everywhere except the Bo = 0 surface. The fact that
the 0/0 condition can be resolved analytically to obtain finite limits should not obscure the frus-

trating fact that these 0/0 conditions would pose numerical difficulties in general numerical algo-
rithms.

Let us examine the uniqueness of the transformation given in equation (53). Assuming that
the transformation is not unique, two possible higher dimensional Euler parameter sets Band B

are chosen, these parameterize C as

C = (Bol - B)(Bol +B) "
C=(fol+B) " (Bol-B)

Subtracting one equation from the other the following condition is obtained:
0= (ol - B)(Bol +B) "
= (Bol + B)(Bol - B) - (Bol - B)(BoI +B)
0

= Bo]§ - ﬁoB
or
£=—§ (59)
BO BO

Equation (59) is the necessary condition for two higher order Euler parameter sets to yield the

same direction cosine matrix C. Obviously, for o # O this can only occur when
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B=
Bo =

where k is a scalar. This condition apparently yields an infinite number of solutions. But

(60)

o

k-
k- B

since the higher dimensional Euler parameters must satisfy the holonomic constraint given in
equation (52), only unit scaling values of k are permissible. Therefore k must be either +1. The
above uniqueness study results in exactly the same duality as is observed with the classical Euler
parameters, except the restriction on Bo # 0. There are always two possible sets of classical Euler
parameters which describe an orthogonal 3x3 matrix C. It is evident that this truth extends to the
more general case of NxN orthogonal matrices . This duality was seen earlier when applying the

holonomic constraint to the kernel of A.
Cnan [B(1)] = Cnav [-B(D)] (61)

Based on the above, if By =0 nothing can be said about the transformation uniqueness. As

was seen with the 4x4 C matrix, the Bo =0 condition permits any point on the unit sphere

3o p=1.

Having established the forward and backward transformations between the NxN orthogonal
matrices and the higher order Euler parameters, their kinematic equations are also of interest. To
describe the orthogonal matrix C as a generalized rigid body rotation, C must satisfy a differential
equation of the form given in equation (1). After substituting equation (48) into equation (33), 0

is

. 1( B) . ( B)
=—T+—|[®{]-5 62
Q > Bo [®] Bo (62)
After differentiating equation (48) directly, Q is found to be
. BoB—ByB
o=DoB Pl (63)

B

Upon substituting equation (62) into equation (63) and after making some simplifications, the

following kinematic relationship is found.
L 1 ~
BQB—BOB=§(B01+B)[0)](l301—3) (64)
This equation can be solved for the skew-symmetric angular velocity matrix [®].

[®] =2(Bol+B)"' (BoB - ByB)(Bol~B)"" (65)

Note that this equation contains the same mathematical singularity at Bo =0 as did equation
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(53). Carrying out the algebra a closed form algebraic equation is found for the higher order an-
gular velocities.

Let us verify that equation (65) for the angular velocities does indeed generate a
skew-symmetric matrix. This is easily accomplished using the definition of a skew-symmetric

matrix as follows
(@] = — [&] =—-2((Bol +B)™ (Bok ~ BoB)(Bol ~B)™")"

(] = - 2(Bol - B)™" T (BoB - BoB) (Bol +BY™""
(] = — 2(Bol™ — BT) ™" (BoBT — BoBT )(Bol” +BT)"

Since the matrix B and its derivative are skew-symmetric matrices by definition, further sim-

plifications are possible to obtain the following result
[&] =~ 2(Bol+B) ™" (- BB +BoB) (Bol ~BY™'
[0] = 2(Bol+B) " (BoB - BoB)(BoI~B)™ g.ed
All higher order Euler parameter differentials must abide by the derivative of the constraint
equation (52).

2BoBo + 2 B1 + ... + 2B By =0 (66)

After using the B from equation (49) the linear differential kinematic equations of the classi-
cal Euler parameters are found. To verify that equation (65) generalizes correctly, known classi-

cal results let us verify two special cases. For the 2x2 case, a scalar differential kinematic equa-

tion results from equation (65) as

o; =2[-B1 Bo][[-SO] (67)
Bs
Adding the constraint in equation (66), equation (67) can be padded to make it full rank.
0 Bo B ][30]
=2 . 68
lw]=2]- B1 BollB, ©9)

Note that as with the 3x3 case, the matrix transforming B to o is orthogonal for the 2x2 case.

Therefore the inverse transformation can be written as:
Bo] 1 [ﬁo “[31] 0
Pof _ 2 < (69)
[Bl 21B1 Bo [(’)1]
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It is straight forward to show that equations (65) and (66) give equation (17) for the 3x3 case.
Analogous to the 3x3 case, the above differential kinematic equation for the 2x2 case is also
bi-linear. As with the 4x4 and greater direction cosine matrices, for proper orthogonal matrices
having dimensions greater than 3x3 the higher dimensional differential kinematic equations also
contain polynomial fractions. Using the B matrix from equation (56) in equation (65) and collect-
ing all the angular veiocity term, we find the differential kinematic equations for the 4x4 case

[ A, AB, AB,
0 Bs(BaBs —BaBa) —Bi(B3+B2)  Bo(B5+B2) Bo(BoBs — BsBs)
Ol | Bs(BuBs +BsBe) —Ba (B3 + B2) —Bo(BoBs +BsBs)  Bo(BG + 5)
Ba(B2Bs —BiBs) —Bs (B2 +B3) Bo(BBs +BoB2) —Bo(BoBi1 + BaBs) -
& Bs (B2Bs — BiBs) — Ba (B2 +B2) Bo(—BoBs +BsBs) —Bo(BoBs + BsPs)
s B, (BBs + BsBa) — Bs(B2 +B2)  Bo(BoBs —B2Bs)  Bo(BsPa + BiPe)
-BX(BZBS'—BBBM)_BG(B%'*'B%) Bo(B2Bs — B3Ba) Bo(BoBs — BiBs) .
AB, AB, ABs a8, 1[{P] @O0
Bo(BsBs —BoBz)  Bo(BoBs +BsBs) —Bo(BoBs +B2Bs)  Bo(B2Ps —BsPs) B,
Bo(BoB: —PBaBs)  Bo(BoBs — BsB3) Bo(B3PBs + B1Bs) —Bo(BoPs + B1Bs) ||B.
Bo(B2+B2)  Bo(B2Bs—BiBs) Bo(BoBs —B2Ba)  Bo(BiBs —PoBs) Byt
Bo(B2Bs — B1Bs) Bo(B3 + B3) Bo(BoB1 —B2B3)  Bo(BoB2 +BiBs) ||,
—Bo(BoBs + B2Bs) — By (BoBi + B2P3) Bo (B3 +B3) Bo(BoBs — BiB2) B,
Bo(B1iBs + BoBs) Bo(—BoB2 +B1B3) —Bo(BoBs + B1B2) Bo(B3 +BT) - LBV

with A = B2 + (BsBs — B2Bs + BiBs)*

&
B>

A

Note that this transformation matrix is no longer orthogonal as were the corresponding ma-
trices for both the 2x2 and 3x3 cases. The bi-linearity found for 2x2 and 3x3 cases is also lost for
the higher dimensional cases. Equation (70) has the same denominator as the 4x4 direction co-
sine matrix. Hence it contains the identical singular situations. However, if Bo =0, the above

transformation matrix is singular and cannot be inverted!

Thus the higher dimensional Euler parameters lose some key properties as they are general—.
ized to parameterize higher dimensioned proper orthogonal matrices. They retain the properties
of being bounded and mapping all rotations onto arcs on a unit hypersphere. However, the kine-
matic transformations and orthogonal matrix representations loose the elegance of their classical
3x3 counterparts. In particular, Bo = 0 poses several unresolved issues for all dimensions higher
than 3x3.

Conclusion

The principal rotation parameterizations presented show great promise as an elegant means

for describing the evolution of NxN orthogonal matrices. The modified Rodrigues parameters are
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only slightly more complicated than their classical counterparts, but double the nonsingular rota-
tion domain The (M+1)-dimensional Euler parameters retain some of the desirable features of
their classical counterparts. However, for orthogonal matrices greater than 3x3 though, the or-
thogonal matrix representation formulas and the corresponding differential kinematic equations
contain some mathematical singularities which require taking the limits of polynomial fractions.
The computational effort for calculating the higher dimensional Euler parameters grows rapidly
when increasing the dimension of the C matrix. For higher dimensional rotations, the modified
Rodrigues parameters show the greatest promise. The gain (increased nonsingular domain in

comparison to the classical Cayley transformation), significantly outweighs the extra computa-

tion.
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Introduction/Motivation

Consider the Optimal Control Problem:
Find u(t) such that the solution of ’

x = f(t,x.u) x(t,) specified

extremizes
t2
J=¢+ [F(txu)t
t,

subject to
P(t, x(t)) =0

Two Approaches to Solution:

. Function Space Approach
Take Variation
_. Pontryagin’s Principle & TPBVP

. Parameterize u(t) = f(t, w,,W,,---,W)

Optimize (W, Wy, W)
via Nonlinear Programming
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RBF Approximation Algorithm

Consider the System of

x = f(t x,u)
with radial basis function approximation

2
2]
u=Ywe*°
i=1

Then the system becomes

;( =f(t,x,w)

Let’s consider the matrix of partial derivative.

Y(tt,) = [%‘—9]

which satisfies

9 pwlt ] = [AOTHe 0]+

of(t,x,w)

et )10

where
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Thus, the original system can be represented
by augmented system

= T'(t,x,w)
where ]
2,
v
f(tx,w)
r(t,x,w) =
of of
[l
The solution to this dynamical system ;
Ay = A Aw

We use minimum norm correction algorithm.
Aw = AT(A A7) ay

SERENOREINE

Wx(t)
A
Y= q(t)
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where

and




-

.
o A Step size limitation filter according
to the value of Aw is used as follows;
wnew — wold + AW

where

¢ Aw| = VAW Aw

If Aw < ¢ for acceptably small ¢, then

|

aw = AT(AAT) 'Ay

else if Aw > ¢ for acceptably small ¢, then
¢ = | B AT AN
AW = [AW]A (AAT) Ay

[
o
o
o
e
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Even after the terminal constraints are met
we generally do not know whether how near
the performance is to optimal.

To drive the performance value toward the
optimal, we introduce a homotopy concept.

‘Jo =AJ+ (1- A) qurrent
Since the homotopy concept is used to treat
the performance index (J,) as an additional
equality constraint, we modify Ay as follows;

| v, (t)

Ay = '
“fz(tf)

L‘Jo - ‘qurrent |

For adaptively spaced RBF algorithm
we check the sensitivity of the terminal
constraints and the performance index
w.r.t. parameters as follows;

we form the augmented Jacobian
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Oy, Ow, oy, |
oWy OW, oWy
oy, Oy, 9y,
A=low, ow, oWy =[A1'A2""’AN]
oYq OVq oy,
| OW4 oW, OWN

The A, vector is the gradient of the constraint
and performance index w.r.t. w;.

Adopting the positive measure of the sensitivity
w.r.t. ith parameter as

Si=A"A
we introduce a new RBF according to S,.

With the newly added RBF we increment )
to obtain a new J, and follow the same

procedure until a small increase(A),)

cannot be achieved, while satisfying all
constraints within a tolerance.
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( START >

Initial w, 7, ©

t
x =f(t,x,w)
{22
19).4 ow
v1 [ av Toxt)] [ av v
ST b
oW aX(tf) ow aX(tf)
. Wq
whew — Wold 4 AT(A AT)—IAY
T
;( =f(t,x,w)
2
ox oW
: V1 |
o [ |
o ox(t) | ow ox(ts) WVq
LJo - qurrent_

wnew — wold + AT(A AT)—IAY
|

:

No

—Tay] W
Yes

No
AL e?

- Yes
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EXAMPLE

\tr(o) t = 0
Attracting

Center

Fig. 1 Maximum Radius Orbit Transfer in a Given Time

The differential equations of the system:

= u, r(0) =rq

< V2 Tsin

u=X——%+—————?—-,u(O)=uo

\./=—UV+ Tcos:b | v(0)=—rli
" mg—[mit 0

The terminal constraints :
Y, =ut) =0
1)

=Vv(;)———=0
L P (t; r(t,)
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Evenly Spaced Radial Basis Function Algorithm

-3 lamda vs. # of Evenly Spaced R.B.F.s

8 ; ; ; ;

r(tf) vs. # of Evenly Spaced R.B.F.s

PN oo
e ST OO R ETRTR Y

.................. | SN

1.52
s . T —— T—
PP Be— - SRS N S ]
P I — AR S — T

1.44F e ._. ................... ~ ...................
i i 1 1

20 25

10 15
# of Evenly Spaced R.B.F.s

Fig. 2 X and r(ts) vs. time for Evenly Spaced R.B.F. Algorithm
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3RBFs SRBF.s
4
2
1] (4] 50 100
1{0R.B.Fs
g
o4
£
22
Q.

(=]
g
8

15RBFs

0 50 100 0 50 100
time : 100 > 3.3067(non-dim.)

Fig. 3 ¢ vs. time for Evenly Spaced R.B.F. Algorithm

3RBFs 4RBFs SRBFs
2 - 2 2
1 : 1 : 1 :
0 50 100 0 50 100 0 50 100
6 RB.F.s 8 RB.Fs 10RB.F.s
2 2 - 2 -

0 50 100
25RB.F.s

0 50 100
15R.BFs

0 50 100 0 50 100
time : 100 --> 3.3067({non-dim.}

Fig. 4 v(t¢) vs. time for Evenlt Spaced R.B.F. Algorithm
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Adaptively Spaced Radial Basis Function Algorithm

lamda vs. # of Adaptively Spaced R.B.F.s

0.08 ] T T T
0'06_ ............. l’ ...? ..............................................................................
© oA
© 1 :-
€0.04F------- L. Aveeessnrnnenns dei
«© L
- I
0.02_ .......... 1 ......... & ..........................................................................
d : N : : :
0 i %900 esmngds o6 b 6 600
0 5 10 15 20 25
r(tf) vs. # of Adaptively Spaced R.B.F.s
1.52F e ,/O—O'ee_g_u‘u..v_v v S .,,O H—6—60—%
1.8F--eereeeeeens Q,_. ................... Seesennnennied
I : : :
7 M : :
,_\1.48_ .................. eerearseeseateraned S R R R LR PE PP Gecescecacacncvaniad
= ! : : :
= P : : :
1.46-..,..4.....‘.!'..‘.2 .................... _ ............A......:: ................... \ ...................
1 : : :
1.44f - !' ...... O L L RRECTERTTTRTPRD L R RREETPPES
4 ; ; i
0 5 10 15 20 25

# of Adaptively Spaced R.B.F.s

Fig. 5 X and r(ts) vs. for # of Adaptively Spaced R.B.F.s
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O N » O

0 50 100
6 RBFs

-

N

phi (radian)

50 100
15RBFs

(=]

0 S0 100

10RB.Fs

S0 100

100 0
25RB.Fs
4 ...............
2 ..
0 50 100 0 50 100

time : 100 --> 3.3067(non-dim.)

Fig. 6 ¢ vs. time for Adaptively Spaced R.B.F. Algorithm

3RBFs

6 R.B.F.s

0 50 100
15R.BFs

0 50 100

4RBFs 5SRBF.s
2
15 .............
1 .
[} 50 100
8 RB.Fs 10RBFs
2 2
1‘5 ...............
1 1
0 50 100 0 50 100
25RB.Fs
2 2
15 1.5 /
1 1 -

0o 50 100
time : 100 > 3.3067(non-dim.)

0 50 100

Fig. 7 r(t;) vs. time for Adaptively Spaced R.B.F. Algorithm
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Comparison of Two Algorithms

lamda vs. Number of Parameters
0.08 X7 T T T
I : : :
!N e e e
© 0.06 ,'r 3 : o-.0 : Adaptively Spaced R.B.F.s
o ;i : *—*: Evenl RB.F.
50.04-............'_' ...... ,4. ................. EvenySpacedBS ..........
3 P : z z

15

5 10
Number of Parameters

Fig. 8 X and r(ts) vs. time for Two Algorithm
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CONCLUDING REMARKS

. Radial Basis Function (RBF) Methods Investigated
To Parameterize Function Space Optimal
Control Problem

. Two Variations Studied
. Evenly Spaced Centers
. Adaptive Centers |

. Minimum Norm Nonlinear Programming Algorithm
Used To Iteratively Adjust RBF Weights

. Applied These Ideas to Low - Thrust
Interplanetary Trajectory Optimization Problem

. Our Algorithms Have Been Fully Validated !
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Abstract

In this paper we generalize some previous results
on attitude representations using Cayley transforms.
First, we show that proper orthogonal matrices, that
naturally represent rotations, can be generated by a
form of “conformal” analytic mappings in the space
of matrices. Using a natural parallelism between the
elements of the complex plane and the real matrices,
we generate higher order Cayley transforms and we
discuss some of their properties. These higher order
Cayley transforms are shown to parameterize proper
orthogonal matrices into higher order “Rodrigues”
parameters.

1. Introduction

The question of the proper choice of coordinates for
describing rotations has a very long and exciting his-
tory. Starting with the work of Euler and Hamilton
a series of different parameterizations were intro-
duced by several researchers during the past hun-
dred years. We will not delve into these results here
since they can be found in any good textbook on
attitude representations'2. We just mention the re-
cent survey article by Shuster® in the special issue
in Ref. [4].

In this paper we take a slightly more abstract
point of view than the previous references. Our
main objective is to “unify” some of the existing
results in the area of attitude representations. It
is hoped that this global view will add to the cur-
rent understanding of attitude representations. Our
motivation stems mainly from the recent results on
second order Rodrigues parameters®®7. In partic-
ular, in Ref. 7] it was shown that these (Modified)
Rodrigues parameters can be generated by a second

*Assistant Professor, Department of Mechanical,
Aerospace and Nuclear Engineering. Member AIAA.

t Eppright Professor, Department of Aerospace Engineer-
ing. Fellow AIAA.

t Graduate Student, Department of Aerospace Engineer-
ing. Student member ATAA.

John L. Junkins T and Hanspeter Schaub ¢

Texas A&M University
College Station, TX 77843-3141

order Cayley transform, the same way the classical
Cayley-Rodrigues parameters are generated by the
Cayley transform®. Viewing the Cayley transform
as a bilinear transformation which maps the space
of skew-symmetric matrices onto the space of proper
orthogonal matrices (and vice versa) one is naturally
led to the notion of conformal mappings (a gener-
alization of the bilinear transformation) from the
imaginary axis onto the unit circle (and vice versa).
We seek to generalize these conformal mappings to
matrix spaces. Drawing on the insightful statements
by Halmos® we show that such an intuitive gener-
alization is indeed possible. We are therefore able
to generate the Euler parameters, the Rodrigues pa-
rameters and the Modified Rodrigues parameters as
special cases of such conformal mappings. Higher or-
der Rodrigues parameters can be easily constructed
using this approach, although their relevance to ap-
plications is still to be determined. We explicitly
develop the third and fourth order “Rodrigues pa-
rameters” in order to illustrate potential advantages
as well as difficulties. The question of kinematics of
these higher order “Rodrigues parameters” is much
more subtle and is briefly discussed at the last sec-
tion of the paper. A more in-depth discussion of the
kinematics is left for future investigation.

The first part of the paper reviews the standard
Cayley transform and it generalizes this transform
to higher orders. There is no restriction on the di-
mension of the matrices involved, i.e., the results
hold for n x n matrices. In the second part of the
paper we apply these results to the case of interest
to attitude dynamicists, i.e., the case n = 3.

Some notation and terminology is necessary in
order to keep the discussion clear and terse. We
use the standard mathematical notation SO(n) to
denote the space of proper orthogonal matrices of
dimension n x n. Invertible n x n matrices form the
space Gl(n), the general linear group. The space
of orthogonal matrices is denoted by O(n) and it is
the set of all (invertible) matrices A € Gl(n) such
that ATA = AAT = I. Clearly, if A € O(n) then .




det(A) = £1. The qualifier “proper” then refers
to those orthogonal matrices with positive determi-
nant, that is,

SO(n) = {A € Gl(n) : AAT =1, det(4) = +1}

These matrices represent rotations, while the or-
thogonal matrices with determinant -1 represent refle-
ctions!®. The space SO(n) (as well as Gl(n) and

. O(n)) forms a group. We will see later on that

one can define a differential equation for elements
of SO(n). The solutions of this differential equa-
tion form trajectories (one-parameter subgroups) on
S0O(n) and this differentiable structure makes SO(n)
actually a Lie group (i.e. a group with a differen-

tiable manifold structure).
The space of n x n skew-symmetric matrices will

be denoted by so(n) That is,
so(n)={AER™": A= —-AT}

The space so(n) is actually the tangent vector space
to SO(n) at the identity. This property can be easily
verified by differentiating A € SO(n). Since AAT =
I one has that

% (AAT) = 0 & AAT = —AAT

Evaluating the previous expression at A = I one
obtains that
A= -5
A=l A=l

and so AlA ; is skew symmetric.

2. The Cayley Transform

Cayley’s transformation parameterizes a proper or-
thogonal matrix C as 2 function of a skew-symmetric
matrix Q. It is, therefore, a map

¥ :so(n) — SO(m) (1)
The classical Cayley transform® is given by

C=%(Q) (I-QUI+Q)~!
I+7'(1-@ @

Since Q is skew-symmetric all its eigenvalues are
pure imaginary. Thus, all the eigenvalues of the ma-
trix I+ Q are nonzero and the inverse in Eq. (2) ex-
ists. The Cayley transform is therefore well-defined
for all skew-symmetric matrices. The inverse trans-
formation is identical and is given by

Q=9"}C)=¥(C) = (-OUI+C)"
(I+0)'I-C) (3)
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The inverse transformation is not defined when C
has an eigenvalue at —1, because in this case det(I+
C) =0. Since Cis orthogonal, all its eigenvalues lie
on the unit circle

S! = {(z1,z2) € R?:z3 4 3 =1} (4)

Therefore sp(C) C S', where sp(-) denotes the spec-
trum of 2 matrix, and the transformation (3) re-
quires that —1 ¢ sp(C). The same result is also
shown in Ref. (7).

It is an easy exercise to show that C is orthog-
onal if Q is skew-symmetric. In order to show that
the transformation (2) produces only proper orthog-
onal matrices, let us examine the determinant of C.
Using Eq. (2) the determinant of C can be expressed
as

det(C) = det(I—Q)det (I+Q)7")
det(I + Q)

Since all the eigenvalues of Q are imaginary (sp(@) C
Q) they are of the form *i};. The spectral decom-
position of the matrix Q then yields

Q=R'AR

where A = diag(£i);). (The matrix Q is normal
and normal matrices are always diagonalizable'!.)
Noting that I£Q = R™}(I£A)R we rewrite Eq. (5)
as

det(R-1)det(I — A)det(R) _ det(I - A)
det(R~1)det(I + A)det(R) ~ det(I+A)
1521 (1 —iX)(1 +d))

=11 +iX)(1 = dA)

n§=1(1 + A;.,) -

where 2p is the number of nonzero (imaginary) eigen-
values of Q. Therefore C € SO(n) if Q € so(n) and
thus, the Cayley transformation is injective (one-
to-one) and surjective (onto) from the set of skew-
symmetric matrices to the set of proper orthogonal
matrices with no eigenvalue at —1. :

det(C) =

+1

3. Cayley Transforms as Conformal
Mappings

The three most important subsets of the complex
numbers are the real numbets, the imaginary num-
bers, and the numbers with absolute value one (i.e.,
the numbers on the unit circle). Following the stan-
dard mathematical language, we use the symbols IR,



g = iR and S! to denote these three sets, respec-
tively. Trivially, these sets are subsets of the com-
plex plane, denoted by C. There is a very elegant
analog between these three subsets of the complex
plane and the n x n matrices®, i.e., the elements of
RR"*". This analog can be easily understood and
appreciated as follows: An elementary result in ma-
trix algebra states that every n X7 matrix with real
elements can be decomposed into the sum of 2 sym-
metric and a skew-symmetric matrix. For example,
any A € R"*" can be written as

A+ AT A-AT
A=—3—+7
It is easy to verify that the first matrix in Eq. (6) is

symmetric and the second matrix is skew-symmetric.
Symmetric matrices always have real eigenvalues and

(6)

skew-symmetric matrices have always imaginary eigen-

values. Recall now that a complex number can al-
ways be decomposed into the sum of a real and
an imaginary part. This parallelism between com-
plex numbers and matrices allows one to treat the
symmetric matrices as the “real numbers” and the
skew-symmetric matrices as the “imaginary num-
bers” in the set of R™*" matrices®. In addition,
recall that an orthogonal matrix in R™*" has all its
eigenvalues on the unit circle. Drawing the previ-
ous parallelism even further we can therefore treat
the orthogonal matrices as the “elements on the unit
circle” in the space IR®*". Similar statements can
be made for the case of n x n matrices with com-
plex entries (elements of C"*"), where now hermi-
tian, skew-hermitian and unitary matrices have to
be used instead of symmetric, skew-symmetric and
orthogonal matrices, respectively.

We intend to use this heuristic correspondence
between complex numbers and n X n matrices in or-
der to motivate and generalize the Cayley transform
to higher order. Before we proceed, we briefly review
some elements from complex function theory213,
First, recall that a (complex) function is analytic in
an open set if it has 2 derivative at each point in
that set. In particular, f is analytic at a point 2o if
it is analyticina neighborhood of zo. Moreover, an-
alytic functions have (uniformly) convergent power
series expansions!Z.

Definition 3.1 A transformation w = f(z) where
w, z € € is said to be conformal at a point zg if f is
analytic there and f'(z0) # 0.

A conformal mapping is actually conformal at
each point in a neighborhood of 2, since the ana-
lyticity of f at zo implies analyticity in a neighbor-
hood of zg. Moreover, since f' is continuous at 2o, it
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follows that there is also a neighborhood of zo with
f'(z) # 0 for all z in this neighborhood!?. 1t is a
trivial consequence of the above definition that the
composition of conformal mappings is also a confor-
mal mapping.

A significant special class of conformal mappings
in the complex plane is the class of linear fractional
transformations (also called bilinear transformations)
defined by '

w_az+b
T ez4d

An important property of the linear fractional
transformations is that they always transform cir-
cles and lines into circles and lines!?. In this pa-
per we are interested - in particular - in conformal
transformations of the form (7) which map the unit
circle on the imaginary axis and vice versa. One
such transformation is given by w = f(z) where

1-z

)= 1= ®)

It is an easy exercise to show that if z € S then
|w] = 1, that is, w € S! and thus, w is on the
unit circle. Conversely, if w € S! then the inverse
transformation z = f~!(w) given by

. (ad—bc#0) @)

) = 1o ©)

implies that the real part of z is zero and thus, z € S

The inverse transformation (9) is defined every-
where except at w = —1. The point w = —1is
mapped to infinity (see Fig. 1). In fact, the map
(8) introduces a one-to-one transformation f : 8 —

St\{-1}.

N

Figure 1: Bilinear transformation.

Let us now introduce the conformal mapping ¢ :
S! — S! defined by
n=23,... (10)

gn(w) = v",

The function gn is a mapping from the unit circle
onto the unit circle. This transformation is only




locally injective. Therefore the inverse of gn exists
only locally. Given x = ¢'® € S! the solution of the
equation

x =uw", n=23,...

yields that

w =2,

£=0,1,2,...,n—-1 (11)
Equation (11) shows that, in general, the equation
x = w" has more than one solution. This result will
turn out to be beneficial in section 5 when we discuss
the application of higher order Cayley-transforms
to attitude representations, because these roots can
be used to avoid the inherent singularities of three-
dimensional parameterizations of S0O(3). For k=0
in Eq. (11) we get that w = %, We will call this
the principal nth root of x.

The composition of the maps f and gn is the
function hn : S — S* defined by hn =gn © f, that

) me= (355) (12

which maps the imaginary axis onto the unit circle.
Similarly to gn, this map is only locally invertible.
A local inverse is obtained, for example, by setting
k_;: 0 in Eq. (11), in which case we have that (x =
e'’)

;e
z=¢'"n

§ = arctan (i)f-x)
X+X

and where bar denotes complex conjugate.

where

4. Higher Order Cayley Transforms

One of the most celebrated results in matrix alge-
bra is the Cayley-Hamilton theorem. This theorem
states that a matrix satisfies its own characteristic
polynomial. An important consequence of this the-
orem is that, given any matrix A € R"*" and an
analytic function F(z) inside 2 disk of radius r in
the complex plane, one can unambiguously define
the matrix-valued function F(A) if the eigenvalues
of A lie inside the disk of radius r. In other words,
if F is given by

(-~
F(2)= Za;z‘, lz]<r
i=0
then

F(A) = ia,-A"

i=0
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and the previous series converges assuming that |A;] £
r where A; € sp(A) for j = 1,2,...,7n. There-
fore, the matrix F(A) is well-defined. Moreover,
the eigenvalues of the matrix F (A) are F(};) (G =
1,2,...,n) (Ref. [11]).

Consider now the conformal mapping f from Eq.
(8) which maps the imaginary axis on the unit circle.
This function is analytic everywhere. According to
the previous discussion, the matrix

Q) =(-QU+Q  =(+Q'(I-Q) (13)

is well-defined for Q € so(n) and, actually, C =
£(Q) € SO(n). Comparison between the previous
equation and Eq. (2) reveals that the Cayley trans-
form can be viewed as a special case of a conformal
mapping in the space of matrices.

We have seen that there is 2 natural correspon-
dence between S and so(n), as well as between st
and SO(n). (We caution the the mathematically in-
clined reader to take these statements in the context
of the discussion in section 3. We do not claim that
this correspondence carries any more weight than
providing one qualitative motivation for the gener-
alization of certain complex analytic results to anal-
ogous results in the space of matrices). Following

Eq. (12) we can also define a series of transforma-
tions hn : so(n) — SO(n) by

(@) =I-QrUI+Q " =+Q)"U - C(J)")
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where Q is a skew-symmetric matrix. It should be
clear by now that C = hna(Q) is a proper orthogonal
matrix, i.e., C € SO(n). We shall refer to the family
of maps hn(Q) in Eq. (14) as Higher Order Cayley
Transforms. The consequences of such a generaliza-
tion in attitude representations will become appar-
ent in the next section.

For now, let us concentrate on the inverse map
;! : SO(n) — so(n). Since hn = gno f one obtains
h7t = f~'og;?. The function f-1 is given by
Eq. (9) which, when applied to a proper orthogonal
matrix Q with no eigenvalue at —1, gives the inverse
of the classical (or first order) Cayley transform as
in Eq. (3). The map g;!: SO(n) — SO(n) on the
other hand requires the nth root of an orthogonal
matrix. First, we show that g1 is well-defined in
the sense that the nth root of a (proper) orthogonal
matrix with no eigenvalue at —1 is also a (proper)
orthogonal matrix with no eigenvalue at —1. This
will also prove that the composition of maps g;!
and f-! is well-defined since the range of g lisin
the domain of f~1.

To this end, consider an orthogonal matrix C €
SO(n) such that A # —1 for all A € sp(C). The



matrix C can be decomposed as follows
c=Uvovur (15)
for some unitary matrix U, where
o= blockdiag(©1,02,--+,On-1,+1) (16)
if n is odd and
O = blockdiag(©1,02,...,0s) (17)

if n is even, and

i0; 0 .
GJ'-:[CO e"“i]’ J-’—-‘l,...,‘n

(18)

The diagonal elements of the matrix © in Eq. (15)
are the eigenvalues of C. The principal kth root of
the matrix C is then given by

W =Ue:U* (19)
where W* = C and
O, = blockdiag(®%,0%,...,05_1,+1)  (20)
if n is odd and
O, = blockdiag(©%, 0%, ...,0%) (21)

if n is even, and

L85
p_| €% 0 .
6-—[ 0 e-‘_:'{.-]’ J—-l,...,n (22)
Since ei% # —1forall j = 1,..,n(n —1) the
angles §; # +180deg and thus also %g- # +180deg
for k = 2,3,... and thus e"!{‘ # —1. Notice that
in order to keep W proper we always choose the
positive root of the eigenvalue +1.

5. Attitude Representations

In this section we concentrate on the ramifications’

of the previously developed results to attitude rep-
resentations. Our motivation for investigating Cay-
ley transforms in the first place, stems from the fact
that proper orthogonal matrices represent rotations.
In particular, SO(3) is the configuration space of all
three-dimensional rotations. In other words, every
element of SO(3) represents 2 physical rotation be-
tween two reference frames in IR® and conversely,
every rotation can be represented by an element in
S0(3).

As a reference frame, viz. a body, rotates freely
in the three-dimensional space, the corresponding
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rotation matrix C traces a curve in SO(3) such that
C(t) € SO(3) for allt > 0. The differential equation
characterizing this trajectory on SO(3) is given by

¢ =WwlC (23)

where, given a vector w = (w1,w2,w3) € IR3, the
matrix [w] is defined by - .

’

0 w3 —ws2
W= \:-Ua 0 w ] (24)

wy =—w; O

In the sequel we apply the results of the previous
section in order to parameterize the rotation group.
In particular, the series of conformal mappings from
Eq. (14) provide a family of coordinates on SO(3).
Before undertaking this task we investigate another
important conformal mapping.

5.1. The Exponential Map and the Euler Pa-
rameters

Linear fractional transformations are not the only
class of conformal mappings from the imaginary axis
onto the unit circle. The exponential map, defined
by

(25)

also maps S onto S!. Clearly, if z = i then |z = 1.
The inverse transformation is

w = ezp(z) = ¢€*

z = logw = i(8 + 2n7), n=0,:+1%x2,...
and is defined only locally.

We can therefore define the exponential map from
the space of skew-symmetric matrices to the space of
proper orthogonal matrices. This exponential map
is defined, as usual, by

c=e9=Y —i—!Q" (26)

and the series converges for every Q. For the three-
dimensional case, the matrix Q € so(3) can be pa-
rameterized by

0 B3 —p
Q=| —Fs 0 A (27)
B2 —H 0

As before, given a vector 8 = (B1,52,8) € R? we
will also use the notation [A] to denote the skew-
symmetric matrix in Eq. (27). Noticing that

(8] = 86T - 1IBI°I




one obtains that

812+ = (=1 18I 4],

and

k=0,1,2,...

B = (LFBIP T - (-1)HIBIP¢ V88"

Substituting the previous expressions in Eq. (26) we
get Euler’s formula®

T

CcB) = el = cos I +sin¢ -[%]- + (1 —cos¢) %—
where ¢ = ||8]]. Equivalently,

cm=I+sin¢[-§-]-+(l—cos¢)—[§]—:- (28)

Normalizing the vector § we get a unit vector

£
all

é=

or
B=¢é (29)

Euler’s theorem! states that any rotation can be
represented by a finite rotation (principal rotation)
about a single axis (principal axis). That is, the
principal axis and the principal angle suffice to de-
termine the rotation matrix. From a mathematical
perspective this amounts to parameterizing every el-
ement in SO(3) by the principal axis and the prin-
cipal angle.

By letting the principal axis be along the direc-
tion of the unit vector é and by letting the principal
angle be ¢ as above, Eq. (28) shows how this pa-
rameterization is achieved. Clearly,

C(,) = e*tl (30)
Moreover, introducing the Euler parameter vector

g = (0,491,942, 93)

¢ -
go=cos g, ¢i=ésin %,
and substituting in Eq. (28) one obtains the well-
known formula for the rotation matrix in terms of
the Euler parameters

i=1,2,3 (31)

@+a-a-a3  2(q192+ g093)
2(q192 — qog3) 93— +a3— 43

2(q193 +9092)  2(g293— 001)
2(q193 — 9092)

Clg)=

2(q293 + goq1) (32)

@B-ad-ad+4

AN

Therefore, the Euler parameter representation
is obtained by generalizing the conformal mapping
in Eq. (25) to the space of matrices. Notice from
Eq. (32) that C(g) = C(—g) and both ¢ and —¢
can be used to describe the same physical orienta-
tion. This fact can be used to construct alternative,
or “shadow”, sets of kinematic parameters obtained
via the Cayley transforms.

5.2. Rodrigues Parameters

Since the Euler parameters satisfy the additional
constraint ¢2 + ¢ + ¢ + ¢3 = 1, one is naturally
led to consider the elimination of this constraint,
thus reducing the number of coordinates from four
to three. The Rodrigues parameters achieve this by
defining

pi=H, j=1,23 (33)

90

The three parameters py, p2, p3 then provide a three-
dimensional parameterization of SO(3). The inverse
transformation of Eq. (33) is given by

1 p

— —— PSR o RIS P —

qo (1+ﬁ2)%, 9j (l+ﬁ2)%’ j=123
(34)

where p? = p? +p3 + p3. The Rodrigues parameters

are related to the principal axis and angle through

the equation
é .
= tan —
p=tangé

The rotation matrix in terms of the Rodrigues pa-
rameters can be easily computed using Eq. (32) and
Eq. (34).

1 1-52+2p} 2(p1p2+ p3)
Clp)= 137 2(p1p2—pa) 1-p*+2p3
P~ 1 2(pspr + p2)  2(p2p3—p1)
2(pap1 — p2)
2(p2pa +p1) (35)
1- 5+ 203

It is remarkable the fact that the previous parame-
terization of SO(3) can also be achieved by means
of the Cayley transformation in Eq. (2). Indeed, if

we introduce the skew-symmetric matrix

0 —ps p2
R=-fl=| p 0 -p;
-2 P 0

the transformation

C=(I-R(I+R)'=(I+R)(I-R) (36)



produces exactly the matrix in Eq. (35). There-
fore the classical Cayley-Rodrigues parameters rep-
resentation is obtained by generalizing the confor-
mal mapping in Eq. (8) to the space of matrices.

5.3. Modified Rodrigues Parameters

The normalization in Eq. (33) is not the only pos-
sible one. A more judicious normalization for elim-
inating the Euler parameter constraint is through
stereographic projection!21314. Using this approach,
the new variables

05 = 1—_%;, i=1423
provide coordinates on SO(3). These parameters
are referred to in the literature as the Modified Ro-
drigues parameters® and have distinct advantages
over the classical Rodrigues parameters. In partic-
ular, while the Rodrigues parameters do not allow
eigenaxis rotations of more than 180 deg, the Mod-
ified Rodrigues parameters allow for eigenaxis rota-
tions of upto 360 degs"”“'“'ls. This can be imme-
diately deduced by the corresponding relationship
between ¢ and the principal axis and angle

(37)

a'=tan?-é

4

which is well-behaved for 0 < ¢ < 2. Since both g
and —gq describe the same physical orientation (re-
call the discussion at the end of section 5.1), a second

set of parameters defined by
s 4]

% T

,  3=123

referred to as the “shadow” set!®, can be used to
describe the same physical orientation. These pa-
rameters are also given by
o’= 1 é

tan %

The transformation between ¢ and ¢* is given by'®

(38)

g
’ — S —
g = &2
where 62 = 0To = 0} + 0} + 0} = tan’ .
The rotation matrix associated with the Modi-
fied Rodrigues Parameters is given by

1 4%, + 52 - 80102 + 4-0’353
C(U’):T—:*_—a:_-i 80’102 —40’323 422 +22 -
80103 + 4025 80203 — 401X

80’10’3 - 40’22::
8cq03 + ‘{0’12 (39)
4%3 + X2
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where £ =1-62 and £; = =62 + 207, j=1,2,3.

In Ref. [7] it was shown that these parameters
are defined by a Cayley transformation of second
order. That is, if

0 —03 o8]
S=-[o]= [ o3 0 -0 ] (40)

-0 2 0
then the transformation
cC=(I- 5)2(I+ .5')’2 =+ S)‘z(I - .S')2 (41)

produces exactly the matrix in Eq. (39). Notice that
the inverse of the transformation (41) is not unique
and it requires the square root of an orthogonal ma-
trix. Given C € SO(3) we find a matrix W such
that

C=W? (42)

Once a matrix W is calculated, the skew-symmetric
matrix S containing the Modified Rodrigues param-
eters is computed from

S=(I-W)(I+W)t=(I+W)'(I-W) (43)

Reference [7] outlines this approach. To every or-
thogonal matrix corresponds a principal angle and
a principal direction according to Eq. (30). From
Egs. (30) and (42) one therefore has that

W = 3l (44)

and W has half the principal angle of C. It should
be apparent now how the Modified Rodrigues pa-
rameters double the domain of validity of the pa-
rameterization by taking the square of the classical
Cayley transform.

This observation motivates the search of higher
dimensional Cayley transforms for attitude repre-
sentations. Such transformations are expected to
increase the domain of validity even further. This is
the topic of the next section.

5.4. Higher Order Rodrigues Parameters

According to the discussion in the previous section
one expects that higher order Cayley transforma-
tions will increase the domain of validity of the cor-
responding parameters. The main task of this sec-
tion is to derive these higher order parameters and
find their connections to the Rodrigues parameters,
the Modified parameters and the Euler parameters.
To this end, consider first the fourth order Cayley
transform defined by

c=(I-T)*I+7)* (45) -




for some skew-symmetric matrix

0 -T3 T2
T= --[T] = { T3 0 -n (46)

-1y 51 0

We know that the matrix C is (proper) orthogonal.

Recall from the results of section 3 that if F is
analytic function, then the eigenvalues of the matrix
F(A) are given by F(}j) where ); are the eigenval-
ues of A. It is an easy exercise to show that the
eigenvalues of the skew-symmetric matrixin Eq. (46)
are given by

0, xi(rf+m+ r§)§ (47)

Similarly, the eigenvalues of the matrix § in Eq. (40)
are given by

0, <ki(el +o3+od)} (48)

Let )\, denote an eigenvalue of T and ), an eigen-
value of S. Comparing Egs. (41) and (45) one sees
that the matrices S and T are related by

(I-S)I+8)'=(I-TPI+ T2 (49)

This suggests that A, and ), are related by -

1 - Aa - 1 - Af 2
1+ X, "(1+,\f) (50)
or (142)?
’ + Ar
Solving for A, one obtains that
2),
Y= T3 A2

Substituting the expressions for s and A, from
Egs. (47) and (48) in the previous equation one ob-
tains that

+i(r? + 72 + 3}
l—1}—12—13

ti(e? +o3+od)i =2

Upon squaring this expression one obtains

22+l
-~

o’f+o’§+a§=4(

This equation suggests that o and 7 are related by

27j

2 2 27

0; = +——5—n——7
J 1"‘7'1"_1'2—7'3

i= 1,2,3 (51)

Arbitrarily, and without loss of generality, we choose
the solution with the plus sign. Substitution in S
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and computing C from Eq. (41) verifies the expres-
sion in Eq. (51).

The relation between 7 and g is obtained by ob-
serving that

27;

gj .
= , =1,2,3 (52
1_73_1—22_1'32 1+4q0 J ( )

Using the shorthand notation 7% = 7f + 72 + 73 the
previous expression can be written as

27 g .
= —t, =123
1-72 1440 !
Therefore,
g T _dratd
1-#2 " (Q+aw)?
or
(1++"' P g+d+gd+(te)
1-72 (1+4)?
2(1 + o) 2
= 53
(1+gq) 1+a (53)
or that
1+, V2
1-#27 "1+
and thus, :
2 _#V2+V1+ @
1-72 VvI+ao
Using now Eq. (52) one finally obtains that
9; . .
T = , i=123 (34
T 14902 V2(1+ ) &Y
Conversely, from Eq. (53) one obtains that
1-#2\?
1+g=2 (T:‘_?i) (55)

and using Eq. (52) that

- 4Tj(1 - ‘f'z)
Vs

From Eq. (55) we also have that

. =2(1—f—2)’_1_ (1- 672474
° 1+72 T T+

where # = (#?)2. Letting W = (I - T)(I +T)~!
and since C = W* one obtains that

i=1,2,3

W =il



where ¢ is the principal angle of C. Moreover, using
the definition of the Euler parameters from Eq. (31)
one obtains the following result for the T parameters

. 2 .
r= SIT 2 & (36)
1+cos$+ ﬁ1+.c05%)

where & is the unit vector along the principal axis.
Using the trigonometric identity cos % = 2 cos? %—1,
the previous equation reduces to

in 2
sin 3

= é 57
T 1+cos%:!:2cos% (57)

Keeping the plus sign, Eq. (57) can be further re-
duced to the simple formula

7y = tan % i, (—dr<g<dn)  (58)
From Eq. (58) it is apparent that = is proportional
to the principal rotation axis, like the classical and
the Modified Rodrigues parameters, where now the

proportionality factor is f(¢) = tan$. A plot of
f(¢) is shown in Fig. 2.

3
f(6)

2

1

-3 pi-2 Pi -Pi pi 2P 3P q)

-1
-2

At

Figure 2: Plot of f(¢).

Equation (58) is reassuring, since it proves that
the 7 parameters indeed behave as “higher order”
Rodrigues parameters which can be used to “lin-
earize” the domain of validity of the kinematic pa-
rameterization. By this, we mean that Eq. (58) be-
haves almost linearly as a function of the principal
angle ¢ (especially in the region -x/8 < ¢ < 7/8);
see also Fig. 3.

If we choose the minus sign in Eq. (56) we obtain
that 1

é, (0< ¢<8m) (59)

=

tan %

Moreover, reversing the signs of the Euler parame-
ters in Eq. (54), one obtains that the 7 parameters
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have a unique set of “shadow” parameters like the
Modified Rodrigues parameters®. These parame-
ters are obtained by setting ’

—sin®
s sin £

= é 60
1—cos-‘.j-:1:2sin% (60)

In can be easily verified that the corresponding “shadow”
parameters reduce to

tan® -1
8 "¢

-2r<¢$<6 61
e (meese O

s
TL=

and

1+tan2 .
=38

(=67 < ¢ < 2) (62)

= 3
1—-tang

As the original 7 parameters approach +1, the asso-
ciated “shadow” parameters 7° approach zero and
vice versa. The general transformation between the
original and the “shadow” set is given by

, 1-#2
=T (2%2 T+ 1’-2)1‘-) (63)

where # = (72)}. Equations (58),(59),(61) and (62)
can be used in order to compute the four distinct
roots of Eq. (45). Note also that Eqgs. (58),(61),(59)
and (62) can be also written in the form

‘r=tan(-§-—k§) é, k=0,1,2,3

respectively.

The “shadow” parameter set 7° isshown side-by-
side with the original 7 parameters in Fig. 3. The
shadow set is plotted in grey color. Figure 3 also
shows that T parameters are indeed very linear for
small rotations within £180 deg.

As with the Modified Rodrigues parameters (and
other stereographic parameters'®), these “shadow”
parameters represent the same physical orientation
as the original set and abide by the same differen-
tial kinematic equation. They could be used to avoid
the problems of approaching the £720 deg principal
rotation. By switching to the shadow trajectory,
all numerical problems would be avoided. Having,
however, a principal rotation range of £720 deg is
really more than needed. Limiting the principal ro-
tations to be within +180 deg would suffice and be
much more attractive. As the magnitude of 7 ap-
proaches tan £ then one would simply switch the 7
to their “shadow” set. Having |r| = tan § corre-
sponds to go = 0. From Eq. (54) one can then see .




N
\:‘\

Figure 3: Comparison of original and “shadow” T
parameters.

that at this point, the two sets of parameters are
related by 7 = —7°. The combined set of original
and “shadow” 7 parameters would provide a set of
attitude coordinates which are “very linear” with re-
spect to the principal rotation angle, more so even
than the Modified Rodrigues parameters. We note
in passing that the previous approach can be easily
extended to any Cayley transform of order 2, since
Eqgs. (49) and (50) can be used iteratively.

For the third order Cayley transform we have
that

C=(I-PPUI+P)=(+ P)~3(I-P)® (64)

where P = —[p] and p = (p1, P2, pa) the correspond-
ing parameters. If A, and ), denote the respective
eigenvalues of the skew-symmetric matrices R and P
then, using Egs. (36) and (64), they must be related

by
1-% _ (1=%)°
1+, (1 + ,\,,)

or, upon expanding the previous equality

1-2, 1= +33-3%
1+, 1+23+3M2+3%

thus (14 2)°
=4t )
1+% = Ti5x
Solving for A, we obtain
_ A3+ A2)
T 1430

The previous equation suggests that p; and p; are
related by

p;(8 — pl — p3 — P3)
1-3(p} +p3+p5)’

pi =% j=1,2,3

2068

In order to get the relation of p to the Euler
parameter vector one can set

pi(3-pi-p3-rd) _ 4

= 65
1-3(p2+p3+p3) (65)

and solve for p? = p? +p3+p3. After some algebraic
calculations, it is not difficult to show that, in fact,

@+ _ 1
(1-32 @

Solution of the previous equation for p? requires the
solution of a cubic equation. Once p? is known how-
ever, it can be substituted into Eq. (65) to get the
desired result. Actually, from Eqgs. (65) and (66) we
have that

(66)

— 1252 (2 _ 52
qo=%, qJ=:th(3——_To.p__)r j=112,3
a+mi L+

Letting W = (I — P)(I + P)~! then since C = w3
one obtains that

W= e%[é]

where ¢ is the principal angle of C.

6. Kinematics

The kinematic equations in terms of the  param-
eters can be computed as follows. From Egs. (23)
and (45) we have that

¢ = Su-TI+ T+ U= AT
= S -TII+T)™
or that

& (-Ty|-CO FUI+TY] = SEI-T)* 6D

where we have used the fact that

d,oa__,a(8 -1
£ e (44)

for any square matrix A. Using also the fact that
d n = i d n—-j=-1
A" = ?-_-:o A(A)A

and performing the differentiations in the left-hand-
side of Eq. (67), one obtains a set of nine linear equa-
tions in terms of 71, 72. and f3. Similarly, the right-
hand-side of Eq. (67) is linear in terms of wy,ws,w3.

10



Choosing three (independent) equations out of these
nine, we get a linear system of the form

V(r)r =U(r)w
Solving for  we finally get that the kinematic equa-
tions for the T orientation parameters are given by

%—I- = VYU (r)w = G(T)w
where the matrix G(r) is given by

T, 4 3~ 301+ 7)
2r3(1 — #2) + 1 72(3 — 72)
—-21'2(1 - .3-.2) + 1'11’3(3 - 1“.2)
—275(1 - #2) + (3 = #?)
T4 it~ 303 4 7)
o (1 — #2) + 7p73(3 — %)

21’(1 - %2) + 1733 - f‘z)
—21y(1 — #2) + 1o73(3 — #?)
Ts + 1213 = 3(r2 + 73)

G(r) =

1-7

(68)

and T} = %(1+rf+r§‘+r§-2rj4), j=1,2,3. This
equation can be written more compactly in a vector
form as follows

dr

~2 T
T T7T
dat )

1
sa- 7 e
- 41—+ (1 -67+ 7w (69)

These kinematic equations are not as simple as
the corresponding kinematic equations for the Ro-
drigues or the Modified Rodrigues parameters’}4.
Moreover, there is an apparent singularity at ¥ =
+1, equivalently at ¢ = 2. The limiting behavior
of these equations as # — 1 will be determined
through further analytical and numerical studies.
At any rate, because of the near-linear behavior be-
tween ¢ and the magnitude of T as seen in Fig. 2,
for small principal angles, Eq. (69) is expected to be-
have in a more “linear-like” fashion than either the
Cayley-Rodrigues or the Modified Rodrigues param-
eters. ' ‘

Similarly, for the third order Cayley parameters,
one can derive the following kinematic equations

2 = s -
— 3(3-)p+3(1—3p)]w (70)

These equations can be derived starting from Eqgs.
(23) and (64) and using similar arguments as before.
Singularities for the p parameters are encountered at
$ = £/3. As before, further analysis is required to
determine the limiting behavior of this system as
p— V3.
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7. Numerical Example

In order to demonstrate the potential benefits or
drawbacks of the previous kinematic parameters the
following simulation was performed. We integrated
Egs. (69) as well as the corresponding kinematic
equations in terms of the Cayley-Rodrigues (p) and
the Modified Rodrigues parameters (o) starting from
the zero orientation and subject to the constant an-
gular velocity vector w = (0.25,0.4,—0.1) (rad /sec).
This corresponds to a linearly increasing value of the
principal angle . The results of the simulations are
shown in Fig. 4. This figure actually shows only the
first components of the kinematic parameter vec-
tors, as the other two components exhibit similar
behavior.

COMPARISON OF ORIENTATION PARAMETERS

9 10 11 12 13 14 1§

3 4 5 6 7 8

¢ (rad)

Figure 4: Orientation parameter comparison.

As it is evident from this figure, the classical and
the Modified Rodrigues parameters encounter the
singularity earlier that the 7 parameters. We note,
however, that since discontinuities in the parameter
description are typically acceptable in applications,
the Modified Rodrigues parameters can be made to
avoid the singularity altogether by simply switch-
ing to their “shadow” set!S. The same also holds
for the 7 parameters via Eq. (63). Figure 5 shows
the simulation where the parameters ¢ and 7 are
allowed to switch to their respective “shadow” sets.
Although the points of switching are arbitrary and
can be chosen according to the particular applica-
tion, a reasonable choice is to switch when the pa-
rameters and the corresponding “shadow” set have
opposite signs. This will ensures continuity of the
magnitude. From Egs. (38) and (63) this occurs
when ¢ =k, k = £1,£2,.... This is the situation
depicted in Fig. 5. The 7 parameters are shown in
solid line, and the o parameters are shown in dashed
line.
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Figure 5: Orientation parameter and their “shadow”
sets.

Since the classical Rodrigues parameters do not
have an associated “shadow” set (better, the shadow
set coincides with the original parameters), only the
the ¢ and T parameters are plotted in Fig. 5.

8. Conclusions

We have extended the classical Cayley transform
which maps skew-symmetric matrices to proper or-
thogonal matrices to higher orders. The approach
is based on the observation that Cayley transforms
can be viewed as generalized conformal (bilinear)
mappings in the space of matrices. The Euler pa-
rameters, the Rodrigues parameters and the Modi-
fied Rodrigues parameters follow as special cases of
this approach. In addition, we generate a family of
higher order “Rodrigues parameters” which could be
used as coordinates for the rotation group. It still
remains, however, to determine the applicability of
these higher order parameters in realistic attitude
problems.
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AN EIGENFACTOR SQUARE ROOT ALGORITHM
FORMULATION FOR NONLINEAR DYNAMICS
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A novel method is presented to solve the equations of motion for a large
class of constrained and unconstrained dynamical systems. Given an analytic
expression for the system mass matrix, quasi-coordinate equations of motion
are derived in a manner that generates equations analogous to the dynam-
ics/kinematics partitioning in Eulerian rigid body dynamics. This separation

+ is accompli